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RESUMO

Este trabalho analisa a geometria do espaco-tempo em torno de um buraco negro simétrico,
com base na Teoria da Relatividade Geral de Albert Einstein. A pesquisa aborda de forma
significativa a transicao da gravidade classica de Newton, entendida como forca, para uma visao
moderna que a descreve como consequéncia da curvatura do espaco-tempo causada pela presenca
de massa e energia. Sao discutidos os fundamentos tedricos das teorias da Relatividade Restrita e
da Relatividade Geral, culminando na métrica de Schwarzschild como solucao exata das equagoes
de campo de Einstein no vacuo. A partir dessa métrica, analisam-se conceitos fundamentais
como o horizonte de eventos e a singularidade, essenciais para a compreensao do comportamento
do espago-tempo em regides de gravidade intensa. Dessa forma, conclui-se que a métrica de
Schwarzschild representa uma das solucoes mais elegantes e influentes para o entendimento da
estrutura geométrica dos buracos negros.

Palavra-chave: Relatividade Geral; Buracos Negros; Espaco-Tempo; Métrica de Schwarzschild.



ABSTRACT

This work analyzes the geometry of space-time around a symmetric black hole, based on Albert
Einstein’s Theory of General Relativity. The research significantly addresses the transition from
Newton’s classical concept of gravity, understood as a force, to a modern view that describes it
as a consequence of the curvature of space-time caused by the presence of mass and energy. The
theoretical foundations of the Special and General Theories of Relativity are discussed, culminating
in the Schwarzschild metric as an exact solution to Einstein’s field equations in vacuum. From this
metric, fundamental concepts such as the event horizon and the singularity are analyzed, which
are essential for understanding the behavior of space-time in regions of intense gravity. Thus,
it is concluded that the Schwarzschild metric represents one of the most elegant and influential
solutions for understanding the geometric structure of black holes.

Keywords: General Relativity; Black Holes; Space-Time; Schwarzschild Metric.
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1 Introducao

O espago e o tempo sempre despertaram grande fascinio e curiosidade entre cientistas e filosofos,
sendo objeto de estudo e de grande reflexao ao longo dos séculos. A necessidade pela compreensao
da natureza dessas entidades fundamentais da realidade trouxe o surgimento de novas concepcoes
que moldaram o desenvolvimento da fisica moderna. A relacao entre espaco, tempo e gravidade
constitui um dos mais profundos temas da ciéncia, e dois momentos significativos na historia,
entre 1905 e 1915, foram responsaveis por revolucionar completamente o entendimento dessa
compreensao, com a formulacao das teorias da Relatividade Restrita e da Relatividade Geral,
propostas por Albert Einstein.

Publicada em 1905, a Relatividade Restrita reformulou as nocoes classicas de espaco e tempo,
introduzindo um novo paradigma para a ciéncia, baseada na constancia da velocidade da luz
e na invariancia das leis fisicas em todos os referenciais inerciais. Essa teoria mostrou como o
espaco e o tempo nao sao entidades absolutas e independentes, mas aspectos diretos de uma tinica
estrutura chamada espago-tempo. J4a em 1915, Einstein ampliou novamente os conceitos sobre
a Relatividade, com a teoria da Relatividade Geral, apresentando uma nova interpretacao para
Gravidade, nao tratando mais como uma for¢a que atua a distancia, como em Newton, mas como
sendo consequéncia direta da curvatura do espaco-tempo causada pela presenca de massa e energia.

Essa visao geométrica do universo permitiu agora compreender diversos fendmenos cosmicos
sob nova 6tica, entre eles os buracos negros, ja que sao regioes do espago-tempo em que a curvatura
se torna tao intensa que nada, nem mesmo a luz, pode escapar de sua forte influéncia gravitacional.
Esses objetos de gravidade rigorosa constituem uma das previsdoes mais significativas presentes
na Relatividade Geral e representam, seguramente ainda, um dos maiores desafios teoricos e
observacionais da fisica.

A escolha deste tema se justifica tanto pela sua relevancia conceitual e tedrica que a Relati-
vidade Geral apresenta dentro da Fisica moderna quanto pela necessidade de compreender como
os fenomenos de extrema acao gravitacional, como os buracos negros, podem ser explicados por
meio de estruturas geométricas e matematicas. Além disso, estudar e compreender a geometria
do espago-tempo em torno de um corpo massivo proporciona novas bases solidas para o entendi-
mento cosmologico e dos limites da fisica classica, mostrando diretamente como as mudancas na
passagem de tempo e a curvatura do espaco sao afetadas pela presenca de massa e energia. Ja
do ponto de vista educacional, apresenta como esses conceitos, ao serem compreendidos, auxiliam
na formacao mais critica do estudante de Fisica, favorecendo tanto uma visao integrada entre
matematica e natureza quanto o raciocinio teérico.

Dessa maneira, o presente trabalho tem como objetivo realizar um estudo sobre a geometria
do espaco-tempo em torno de um buraco negro simétrico, analisando a métrica de Schwarzschild
e discutindo de maneira relevante as implicagoes fisicas e geométricas derivadas dessa solucao
das equacgoes de Einstein. Ao longo do texto, serao abordados os fundamentos historicos e teori-
cos que conduzem de forma concreta e linear ao desenvolvimento da Relatividade, bem como a
transicao das concepcoes classicas sobre espaco e tempo para o modelo relativistico que sustenta

a fisica moderna.
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Metodologicamente, o trabalho prioriza uma compreensao conceitual e linear da Relatividade
e de suas implicacoes geométricas, fundamentada em andlises bibliograficas de obras classicas
e contemporaneas da Fisica. O desenvolvimento do trabalho esta diretamente estruturado em
capitulos que vao percorrer desde o que conhecemos sobre pensamento fisico moderno, com as
contribuicoes de Galileu e Newton, até as contribuigoes significativas para a fisica relativistica de
Einstein e a detalhada anélise da métrica de Schwarzschild. Com isso, busca-se esclarecer como
a geometria do espago-tempo se comporta em redor de um buraco negro simétrico, ja que sao

fundamentais suas contribuicoes para a fisica tedrica e entendimento sobre a estrutura do universo.

2 Galileu Galilei e o Inicio da Fisica Moderna

Amplamente reconhecido como um dos precursores da ciéncia experimental e da fisica moderna,
Galileu Galilei (1564-1642) nao se limitou apenas a descobertas cientificas, mas também a uma
nova forma de fazer ciéncia. Galileu baseava-se na experimentacao, observacao e, de forma decisiva,
no uso da matematica para descrever os fendomenos observados na natureza. Diante disso, este
capitulo busca abordar uma analise sobre suas principais contribuicoes, sobre seus experimentos
referentes ao movimento e seus estudos sobre o principio da invariancia, em que tais conceitos sao

fundamentais para entender a consolidacao da fisica moderna.

2.1 As contribuicoes de Galileu para a compreensao do movimento e

da gravidade

Durante séculos, as concepcoes acerca do movimento e da gravidade foram pautadas pelo
que conhecemos de fisica aristotélica. O modelo de Aristoteles permaneceu concreto até o século
XVII, em que se acreditava que o movimento dos corpos era ligado exclusivamente a sua natureza
e massa, sugerindo que corpos mais pesados cairiam mais rapidamente que corpos mais leves [I].

Com isso, Galileu foi o primeiro a propor uma abordagem ligada & modelagem matematica dos
fendmenos e ao carater experimental para prova-los. Galileu nao apenas refutou esses conceitos
mais antigos, mas mudou a forma de analisar a linguagem desses fendémenos naturais, visto ir
contra as ideias mais qualitativas propostas pela filosofia natural de Aristoteles e propor essas
concepcoes quantitativas na natureza.

Destacam-se dentre suas principais contribuicoes significativas as primeiras nocoes sobre inér-
cia. Embora inteiramente formal, sendo desenvolvida mais tarde por Isaac Newton, Galileu ja
mostrava que, na auséncia de forcas externas, como, por exemplo, o atrito, os corpos tendem
a permanecer em um movimento retilineo uniforme ou em repouso. Tal suposicao ja apresen-
tava uma ruptura direta com o que Aristoteles acreditava, pois ele entendia que todo movimento
necessita, para ser mantido, uma forga constante [2].

Além dessas referentes contribuicoes, sao notaveis seus estudos sobre a queda dos corpos,
demonstrando como a aceleracao de um corpo em queda vai ser constante, independentemente da

sua massa, desde que sejam desconsideradas as forcas dissipativas, como, por exemplo, o (atrito
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do ar). Segundo Galileu, em auséncia de resisténcia do ar, corpos de diferentes massas caem com
a mesma velocidade e atingem o solo simultaneamente.

Essa afirmacgao propds um caminho significativo para os estudos de gravidade, visto que, sob
acao exclusiva dela, esses corpos experimentam a mesma aceleracao. Posteriormente, também
objetivou novas contribuicoes no desenvolvimento matemético do movimento retilineo uniforme-
mente acelerado. Mostrando que, a partir de algumas observacoes experimentais utilizando planos
inclinados, foi percebido que corpos com um movimento sob aceleracoes constantes percorriam dis-
tancias sempre maiores, mas com intervalos de tempo sempre iguais. Levando Galileu a seguinte

equacgao para descrever esse tipo de movimento
L,
S:Sg+%t+§at, (1)

nesta equacao, () é o tempo decorrido; (5), a posicao final do corpo no instante (t); (Sp) ¢ a
posi¢ao inicial do corpo. Ja (Vp) é a velocidade inicial no instante (t) igual a zero, e, ndo menos
importante, (a) é a aceleragdo constante & qual o corpo estd submetido. Com essa expressao,
permitiu prever como um corpo, ao longo do tempo, vai se comportar com um movimento em
aceleragao constante. Se consideramos a queda livre vertical desse corpo, a partir de uma posi¢ao
(So = 0) e do repouso (Vy = 0), e a aceleragao da gravidade (g), essa equac¢ao do movimento

uniformemente acelerado vai simplificar para a seguinte expressao

5= ot (2)
essa equacao vai expressar com clareza a distancia percorrida pelo corpo em queda livre em funcao
do tempo. Confirmando a relacao descoberta por Galileu de que o deslocamento é proporcional
ao quadrado do tempo. Ja que, se o tempo de queda for dobrado, a distancia percorrida seréd
quadruplicada, mostrando mais uma vez que a grandeza na obra de Galileu esta entrelacada em
unir experimento com o raciocinio matematico.

Em sintese, Galileu nao apenas é relevante por seus estudos referentes a gravidade e movimento,
mas também por trazer uma nova forma de fazer ciéncia, mudando a propria pratica cientifica
[3]. Substituindo analises qualitativas feitas outrora por praticas mais quantitativas, trazendo a

experimentacao e abordagem matematica juntas [4l 5].

2.2 O principio da invariancia de Galileu e sua importancia para a fisica

Diante de suas contribuicoes significativas para o estudo do movimento e queda dos corpos,
Galileu formulou um dos mais importantes e duradouros principios estudados na fisica. Principio
esse, chamado de principio da invariancia, sendo conhecido como "Relatividade Galileana", por se
tratar de estabelecer que as leis fisicas sao as mesmas em todos os sistemas de referenciais inerciais.
Ou seja, para corpos que se movem com velocidades constantes um em relacao ao outro. Essa
ideia foi proposta devido a ser observado que nenhum experimento mecanico realizado dentro de

um sistema em movimento uniforme pode detectar esse movimento em relacao a outro referencial
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inercial externo, sendo que nao haja qualquer interacao com o ambiente externo.

Galileu revolucionou ao tirar a no¢ao entendida sobre os conceitos de repouso absoluto, introdu-
zindo o movimento relativo, que nao tinha um referencial privilegiado para mostrar os fenémenos
fisicos. Validando qualquer sistema inercial para analisar as leis de movimento. Para isso ficar
mais claro, podemos usar um exemplo que ajude na compreensao. Por exemplo, imagine um trem
em movimento retilineo e uniforme sobre trilhos precisamente nivelados: nele tem um observador
num determinado vagao bem fechado, sem contato ou referéncia externa, os fenémenos mecanicos
vistos por ele dentro do vagao como um objeto sendo lancado verticalmente ou deixar cair uma
maca, ocorrem da mesma forma como se o trem tivesse parado.

Em termos matematicos, o principio é expressado pelas transformadas de Galileu [6]. Onde, sdo
relacionadas as coordenadas de espaco e as de tempo para um mesmo evento em dois referenciais
inerciais diferentes.

Nesse contexto, analisando a figura abaixo:

ZA ZA .
v
> Evento
|
, |
€t————- V.t ————— 4————-x-———>:
e B R
|
. L
X x'
Y Y’

Figura 1: Representacao de dois referenciais inerciais em movimento relativo. O sistema S’ move-
se com velocidade constante v em relacao ao sistema S ao longo do eixo x, ilustrando o principio
da invariancia de Galileu.

Fonte: Autoria propria (2025).

Na figura acima temos dois referenciais inerciais S e S’, em que o referencial S’ se move em
relacao a S com uma velocidade constante v ao longo de um eixo que podemos denominar como

x. Dessa maneira, as transformadas serao dadas por

r = x—vt

y =y

7 = z

t = t. (3)

Essas equagOes vao mostrar que, para ambos os referenciais, o tempo é o mesmo (absoluto).
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Enquanto, para as coordenadas espaciais, acontece um ajuste conforme a velocidade relativa,
refletindo a visao classica do espaco e do tempo até o inicio do século XX, com o surgimento da
Relatividade restrita proposta por Einstein.

O principio da invariancia proposto por Galileu propos implicacoes significativas: garantiu que
as leis do movimento nao vao depender da velocidade constante do observador e assim permitindo
uma analise unificada conceitual dos fendémenos de descrigao fisica entre referenciais diferentes.
Posteriormente, permitindo por meio dessa nocao de simetria entre dois observadores, a formulacao
das leis de Newton. Com isso, esse principio representa umas das maiores inovacoes feitas por
Galileu, que proporcionou uma concepcao inovadora, dinamica e racional do movimento. Pois
tal principio, mesmo que parecga trivial, retira o dominio do absoluto e traz um contexto mais
observacional, consolidando a nova forma de pensar sobre as leis fisicas e proporcionando pilares

para a fisica moderna.

2.3 Experimentos sobre a queda dos corpos e o movimento uniforme-

mente acelerado

Galileu, sabendo das limitacoes técnicas presentes no seu tempo, teve que encontrar ferramen-
tas inovadoras com o que tinha de palpavel ao seu redor para que pudesse desenvolver experimen-
talmente esses conceitos sobre a queda dos corpos e o movimento uniformemente acelerado. Com
a limitacao tecnologica para medir a queda livre vertical, a qual ocorria muito rapido. Galileu teve
a brilhante ideia de abordar esses conceitos utilizando planos inclinados, visando diminuir a velo-
cidade do movimento e, com isso, possibilitar registrar com uma exatidao superior os intervalos
de tempo em que um corpo percorria algumas diferentes distancias.

Para isso, Galileu teve que ser criativo e ndo poupou maneiras de medir o tempo. Ao utilizar
esferas sobre o plano inclinado suavemente bem polido, utilizou ritmos musicais, ja que tinha
familiaridade com a musica. Ele colocava pequenos ressaltos (como trastes) ao longo do plano
inclinado utilizado, assim, cada vez que a esfera passava por um ressalto, fazia um clique. Ajus-
tando a posigao desses ressaltos, ele conseguia garantir que o intervalo de tempo entre os cliques
fosse sempre o mesmo. Também utilizou até mesmo fluxo de d4gua de um recipiente para outro.
No qual, cuja massa coletada ao final de cada experimento, estimaria o tempo decorrido.

Essa capacidade criativa revela que Galileu ndo apenas era um génio teorico, mas também tinha
grande capacidade de obter dados experimentais de maior confianca usando recursos considerados
simples [5]. Ao registrar essas distancias percorridas e agora conseguir medir os intervalos de
tempo, ele observou que essas distancias cresciam de forma proporcional ao quadrado do tempo,
como vimos nos topicos anteriores. Sendo possivel, devido a sua repeticao sistemaética e precisa
da analise quantitativa dos resultados por ele feita. Sendo fundamental no seu desenvolvimento
matematico do movimento retilineo uniformemente acelerado discutido antes.

Assim, torna-se mais notavel que, a partir de agora, ndao apenas observava os fenémenos, mas
agora tem uma necessidade de compreender de maneira logica e significativamente quantitativa.
Agora a realidade observavel serve como critério de verdade a ser analisada e nao apenas a razao

pura proposta por um principio absoluto.
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Em suma, os experimentos de Galileu, além do seu rigor tedrico e experimental, proporcionaram
o simbolismo da passagem do que conhecemos de filosofia natural para o que denominamos de
fisica moderna [3]. Mostrando que uma observacio pautada na sistematizac¢ao dos dados coletados
e uma modelagem matemaética concreta podem ser trabalhadas lado a lado, revelando as leis que
regem os movimentos dos corpos. Assim, essa abordagem nao apenas inspirou Isaac Newton, mas

modificou toda a fisica classica que se dava continuidade.

3 Isaac Newton e a Consolidacao da Mecanica Classica

Sendo um dos maiores expoentes do que conhecemos sobre ciéncia moderna, Isaac Newton
(1643-1727) estabeleceu as bases da mecénica classica com suas leis de movimento e expandiu os
estudos outrora feitos por galileu e outros precursores. Com seus trabalhos, Newton possibilitou de
forma clara entender agora os fenomenos da natureza e de maneira matemética os seus dinamismos.
Para mais, ele estabeleceu sua lei da gravitagao universal, que corrobora no entendimento das
demais, visto entender a dinamica da queda de um corpo proximo a terra até o movimento dos

planetas presentes no sistema Solar.

3.1 As leis do movimento de Newton e a Lei da Gravitagcao Universal

Newton, para ter uma compreensao concreta do movimento, propds as trés leis fundamentais
da mecanica, conhecidas como Leis de Newton:

A Primeira Lei, chamada de Lei da Inércia, afirma que um corpo em movimento tende a
manter seu movimento em linha reta e com velocidade constante, e um corpo em repouso tende
a permanecer em repouso, a nao ser que seja obrigado a mudar seu estado por forcas externas.
Essa concepcao, por si s0, ja destoava do que era entendido anteriormente, pois demonstra que o
movimento nao necessita de uma for¢a continua para ser mantido [IT].

A Segunda Lei, também chamada de Lei Fundamental da Dindmica, estabelece de forma
quantitativa uma relacao entre massa, aceleracao e forca, a qual pode ser representada pela seguinte

equacao
F=m-a. (4)

Nessa equacao, F representa a forca resultante que atua sobre um determinado corpo, m representa
sua massa, e @ a aceleracao produzida. Essa relagao é fundamental para a analise do movimento
dos corpos em intimeras situagoes.

A Terceira Lei, evidenciada principalmente na interacao direta entre corpos, permite com-
preender como ocorrem fendmenos como colisoes e a propulsao de foguetes. Também chamada de
Lei da Acdo e Reacao, ela afirma que para toda acao existe uma reacao de mesma intensidade,
mas em sentido oposto.

Agora, visto o que discutimos até aqui, podemos analisar alguns pontos importantes sobre

as trés leis. Como as Leis de Newton sdo formuladas para referenciais inerciais [12], a Primeira

15



Lei desempenha um papel fundamental: ja que define o que é um referencial inercial, isto é, um
sistema no qual um corpo permanece em repouso ou em movimento retilineo uniforme quando
a forca resultante é nula. Assim, embora o comportamento descrito pela Primeira Lei possa
ser obtido da Segunda Lei ao considerar o caso particular Fr = 0, a Primeira Lei nao se reduz a
Segunda. Ela possui carater conceitual proprio, pois estabelece o critério necessario para identificar
os referenciais nos quais a Segunda Lei é valida. Ja a Segunda Lei, sendo o principio fundamental da
dinamica, descreve quantitativamente como a forca resultante produz uma variacao na quantidade
de movimento (ou momento linear) de um corpo

- dp d dv .

Fr = — = —(m?) = m— = md. (5)

dt dt

Dessa forma, fica evidente a coeréncia interna do sistema newtoniano e a estrutura logica pre-
sente na mecanica classica. Conhecendo a forca resultante, a Segunda Lei permite determinar a
aceleracao, e consequentemente as velocidades e posi¢oes, por meio de integragoes sucessivas das
seguintes equagoes

L dv d (dF\ &

= — = — —_— = —, 6
dt dt \ dt dt? (6)

a(t)
Essas expressoes vao mostrar a importancia do tempo na descrigao do movimento, pois simplifica
observar como o movimento evolui sabendo suas condi¢oes iniciais e portanto matematicamente
aborda como a primeira lei nao é isolada das demais, e sim esta ligada dentro da abrangéncia do
formalismo Cléassico.

Seguindo essas andlises, agora abordando a terceira lei, podemos observar como ela esta re-
lacionada ao principio de conservagao linear de um sistema isolado (sistemas ao qual nao atuam
forcas externas). Para isso, vamos considerar dois corpos um sobre o outro, no qual sabemos que
através da terceira lei de Newton as agoes mituas entre eles sao sempre iguais, mas com sentido
contrario. Assim, considerando as duas colidindo, o objeto 1 exerce uma forca sobre a particula
2, representada por um vetor ﬁ127 e, de forma correspondente, a particula 2 vai exercer uma forca
sobre o objeto 1, representada por um Fyy. Sendo importante ser considerado, que tratamos aqui
de uma forga forte, pois o segmento de reta que uni as particulas é paralelo ao par acao e reacao.

Com isso, admitindo que os objetos um e dois constituem um determinado sistema isolado
vamos ter apenas as forcas que foram resultado da colisao entre as duas. Para continuar a anélise,
devemos voltar para equacao [p, na qual observamos que a forca resultante delas esté relacionado
a taxa de variagao do momento linear em relacao ao tempo.

Por definicao, o momento linear total p'é dado pela soma dos momentos lineares das particulas,

isto é,

(7)

Sy
I
]
+
Sl
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Agora, vamos derivar a equagao no tempo

dp_ dpy | dp>

dt  dt + dt’ (8)

e aplicar a segunda lei de Newton

sabendo que a Terceira Lei de Newton é
Fip = —Fy, (10)

podemos substituir na equagao @ e observar que teremos a soma das forcas internas nula, como

esperado
dp
— =0, 11
dessa forma, concluimos que
P = constante. (12)

Ou seja, 0 momento linear é constante, pois nao varia com o tempo ¢ (momento linear é conser-
vado). Para complementar essa anélise mecanica, Isaac Newton propds o que hoje conhecemos
como Lei da Gravitagao Universal, a qual descreve de maneira precisa a atracao gravitacional entre
dois corpos com massa. Essa lei nao apenas explica a queda dos corpos proximos a Terra, mas
também o movimento dos corpos celestes, unificando assim o comportamento terrestre e celeste

sob a mesma Otica.

3.2 A Lei da Gravitacao Universal

Buscando compreender nao apenas os fenémenos que ocorrem na Terra, mas também preocupando-
se com os movimentos dos corpos celestes, Isaac Newton propos sua Lei da Gravitagao Universal.
Essa formulagao esta presente em sua obra Philosophiae Naturalis Principia Mathematica [1] e
representa uma das grandes unificacoes da Fisica Classica. Pois matematicamente vai afirmar que
todos os corpos com massa exercem uma determinada forca de atracao entre si, nao importando a
distancia entre os corpos analisados. Nessa obra, Newton também mostra como as leis de Kepler,
anteriormente baseadas apenas em observacoes empiricas, sao consequéncias diretas desta lei.

Segundo Isaac Newton, a for¢a gravitacional entre dois corpos pontuais, com massa m; e
mo, € diretamente proporcional ao produto das massas dos corpos analisados, e inversamente
proporcional ao quadrado da distancia entre eles. Assim, a forca tem a direcao da reta que
unifica as massas analisadas. Se considerarmos que 712 € 0 vetor com origem no corpo m; e sua

extremidade no corpo msg, € que €15 é 0 vetor unitario com a mesma direcao e sentido de 7o, a
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forca gravitacional exercida por m; sobre my é dada por

= Gmimsg
Fip = —Wﬁz, (13)

nessa equacao, G é a constante de gravitacao universal, com valor aproximado de G =~ 6,674 x
107" N - m?/kg”.

A forca gravitacional também satisfaz a Terceira Lei de Newton, ou lei da acdo e reagdo. Ja
que a forca que o corpo msy exerce sobre o corpo m; é igual em mddulo, mas oposta em direcao a

forca Fio, formando o par acao-reacao, como podemos ver na equacao abaixo.

- Gmaom, |
Fpy = ——— 21 14
21 7o |? €21, (14)

onde vemos que essas forcas sao aplicadas em corpos distintos, mas possuem mesma intensidade

e sentido contrario. Satisfazendo novamente a seguinte equacao que representa essa ilustracao
F21 = —F12. (15)

Onde podemos observar exatamente a terceira lei de Newton, a qual afirma que para toda acao,
existe uma reacao de mesma intensidade e direcao, mas sentido oposto.

Dessa maneira, podemos discorrer sobre algumas aplicagoes e implicagoes referentes a essa lei.
Ja que se trata de um campo que, além de mostrar a relacao de atracao existente entre corpos com
massa, ela mostra uma grande precisao em relacao a inimeros fenémenos naturais, ja que explica
as interacoes que estao presentes desde a queda de um corpo qualquer na Terra ao movimento dos
planetas ao redor do Sol. Assim, essa unificacao terrestre e celeste foi fundamental tanto fisica
quanto matematicamente para a completude dessa lei.

Dessa forma, podemos, por exemplo, entender a forca com que a Terra atrai um objeto de
massa m perto da sua superficie. Para isso vamos imaginar o seguinte: a massa da Terra é M;
e seu raio médio seja R;, e usando a equacao {4 que vai corresponder diretamente ao peso do
objeto, que mostra sua aceleracao em direcao ao solo. Ja que o peso é o produto da massa com a

gravidade, temos a seguinte equagao para a aceleracao da gravidade:

My

=G —.
9 R

(16)
Isso nos mostra que g é apenas um caso particular da lei da Gravitagao Universal, e nao utilizado
apenas como uma constante usada para alguns fenémenos proximos a Terra. Essa propriedade
ajuda a entender como os fendmenos planetarios funcionam por meio da gravidade. Consequen-
temente, o cilculo de o6rbitas de satélites, explicacao do movimento dos planetas, como ocorrem
os eclipses e até mesmo como o movimento das marés funciona sao apenas algumas das diferentes
contribuicoes que essa lei ajuda a explicar para o entendimento moderno até o desenvolvimento

da Relatividade Geral posteriormente.
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3.3 A visao de espacgo e tempo absolutos na fisica newtoniana

Para fundamentacao de suas leis, Newton precisou entender nao apenas o movimento dos cor-
pos, mas antologicamente analisou a estrutura do universo para fomentar sua concepg¢ao sobre
tempo e espaco absolutos. Segundo Newton, esses conceitos vivem separados de qualquer obser-
vador, ja que em sua analise propds ser sempre o mesmo e imével o espaco, e o tempo, por sua
vez, absoluto ao fluir de forma uniforme, nao tendo relacdo com nada externo. Assim, para todos
os observadores em qualquer lugar do universo, isso seria valido.

Como vimos anteriormente nos topicos sobre Galileu, a mecanica classica aborda matematica-
mente o tempo imutavel, ou seja, independente do referencial, ele serd o mesmo. E como Galileu
mostrava, o espago pode ser analisado pelo sistema fixo de coordenadas, que pode ser imaginado
como um determinado cenario tridimensional, como uma grelha, por exemplo, de forma invisivel,
para o qual os eventos estdo acontecendo. Nessa grelha temos as coordenadas (z,y, z) estando
em repouso absoluto e nao se deformando e nem se movendo. Podendo, para Newton, descrever
a posicao de qualquer corpo em relacao a esse espaco fixo no universo, nao importando o instante
analisado. Nesse contexto podemos ver como um palco e o cantor, onde o espaco é o palco e o
corpo ¢ o ator. Desse modo, os corpos mudam sua posicao ao longo do tempo, pois, se muda
a posicao, tem movimento, mas, como o espaco é imutavel, é possivel saber exatamente onde o
corpo esteve ou esta.

Para Newton, as nocoes sobre aceleracao s6 seriam significativas onde o espaco e tempo fossem

imutaveis. Pois, sabendo que

a= @ (17)
dt

E necessério, de forma simples, para encontrar a aceleracdo, saber a velocidade em instantes
distintos, um referencial como um relogio, ao qual meca o tempo de forma confidvel, e medir as
mudancas de velocidade. Ou seja, depende ligadamente do espaco e tempo; se o tempo fluisse
de formas diferentes para cada observador nesse contexto, a taxa de variacao de velocidade seria
diferente de uma constante universal, e se o espaco deformasse, a trajetoria dos corpos seria
influenciada pelo espaco e nao pela forca, mudando o sentido objetivo de mudanca de posi¢ao e
obrigatoriamente de velocidade e da aceleracao.

Apesar do significativo valor das nocoes acerca de espaco e tempo absolutos, foram cada vez
mais ganhando questionamentos com as melhorias em medicoes astronomicas e consequentemente
com a evolucao presente na eletrodinamica, em que posteriormente a Teoria da Relatividade traria

uma nova formulagao que mudaria o entendimento visto antes desses conceitos.

3.4 Limitagoes da mecanica classica frente a fendmenos eletromagnéti-

cos e velocidades elevadas

Diante das contribuicoes advindas desses conceitos apresentados por Newton, faz-se necessario

também analisar suas limitacoes quando estamos frente aos fenémenos eletromagnéticos e tam-
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bém estudando corpos em altas velocidades. Essas limitacoes se tornaram mais aparentes com a
evolucao na teoria e nos experimentos acerca da optica e do eletromagnetismo por volta do final
do século XIX [25]. Onde, se tornava evidente com a teoria avangando e a experimenta¢ao que as
leis da mecanica classica falhavam em certos fendmenos.

Dentre diversas limitagoes quando estamos em altas velocidades e analisando fenomenos ele-
tromagnéticos, podemos relembrar a segunda lei de Newton, fundamentada na suposi¢ao de que
a massa permanece constante e de que o espaco e o tempo sao absolutos, conforme visto anteri-
ormente. No entanto, com o desenvolvimento das equacoes de Maxwell, ficou nitido que a luz no
vacuo possuia velocidade constante, independente do movimento da fonte ou do observador. Essa
previsao nao é compativel com as transformacgoes de Galileu, que regem a mecanica classica e im-
plicam uma adi¢ao simples de velocidades. Além disso, experimentos como o de Michelson-Morley
mostraram que a velocidade da luz realmente nao varia com o referencial, evidenciando a neces-
sidade de revisar os conceitos classicos de espago e tempo e motivando o surgimento da Teoria da
Relatividade Especial.

Ou seja, afirmacao de constancia da velocidade da luz nao satisfaz as transformacoes de Galileu
e a estrutura adotada na mecanica newtoniana, na qual abordamos anteriormente. Pois, segundo
as transformacgoes de Galileu, que sao base da mecanica newtoniana, a velocidade de um objeto
dependia do referencial, em que, se tivéssemos um objeto se movendo a 50km/h e vocé lancasse
um segundo objeto a 10km/h na mesma dire¢cao, um determinado observador veria a velocidade
do segundo objeto a 60km/h, que é o que vimos sobre adigdo de velocidades, a qual valeria para
tudo, inclusive para a luz. Para Maxwell, se vocé estiver indo ao encontro na direcao de uma fonte
de luz, vocé ainda mediria a mesma velocidade da luz que o observador em repouso, nao batendo
com a adigao de velocidades antes proposta.

Ja com os experimentos de Michelson-Morley, isso se torna mais aparente, aumentando a neces-
sidade dessa nova interpretacao acerca do espaco e do tempo. Realizado em 1887, o experimento
teve como objetivo analisar a deteccao na variacao da velocidade da luz devido ao movimento
da Terra, pelo suposto "éter", mas o resultado nao mostrava nenhuma alteracao ou variacao,
indicando que a velocidade da luz realmente era a mesma para todos os referenciais [20].

Assim como, ao estudarmos o comportamento de particulas proximas a altas velocidades, seus
comportamentos vao distanciando dos previstos pela mecanica classica. Ja que, nesses exemplos
de situacoes, nao basta apenas considerar espaco e tempo como fixo, mas também considerar
como massa inercial aumenta proxima a velocidade alta ou proépria constancia da velocidade da
luz que fizeram ser plausivel buscar uma nova anilise sobre a estrutura do universo, pois para
essas situacgoes a mecanica newtoniana seria incompativel.

Desse modo, essas ideias proporcionaram novamente buscar entender o funcionamento do es-
paco e do préprio tempo, fazendo com que fosse necessario essa nova anélise sobre grandezas que
analisam desde o tempo decorrido, quanto a simultaneidade dos eventos, que aprofundados vere-
mos que dependem do referencial. Devido a isso, entender como ocorre a dilatacao do tempo e a

contragao do espago ¢ necessario rigorosamente, e ¢ o que vamos discutir nos proximos capitulos.
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4 Albert Einstein e a Teoria da Relatividade Restrita

Publicada em 1905, por Albert Einstein, a teoria da relatividade especial, também conhecida
como relatividade restrita, nos apresenta uma revolucao na nossa compreensao do espaco e, conse-
quentemente, do tempo e da natureza das leis fisicas. Onde apresentou novos conceitos e principios
que apontaram revisoes diante das nocoes tradicionais de espaco e tempo absolutos apresentadas
por estudos anteriores, em especial as contribuicoes de Isaac Newton. Quando falamos de rela-
tividade restrita, devemos ficar atentos a dois postulados essenciais, o Principio da relatividade
e a constancia da velocidade da luz. Observando esses dois principios, podemos observar suas

importantes consequéncias.

4.1 Os postulados fundamentais da relatividade restrita

Para compreender a estrutura da Relatividade Restrita é necessario destacarmos dois Postu-
lados fundamentais para a base da teoria. O primeiro postulado vai estabelecer que as leis fisicas
sao invariantes em todos os referenciais abordados, enquanto o segundo abordara a afirmagao de
que a velocidade da luz no vacuo é constante e independente do movimento tanto da fonte quanto
do observador. Nesse contexto, esses principios vao diretamente romper com a visao classica ado-
tada anteriormente acerca do espaco e do tempo como absolutos e propoe um novo arcabouco

conceitual, que vamos explorar nds topicos seguintes.

4.1.1 Postulado I : Principio da relatividade

O principio da Relatividade foi formulado inicialmente s6 século XVII, por Galileu Galilei e
consequentemente refinada por Einstein ao desenvolver a teoria que estamos observando. Esse
principio consiste em uma parametro fundamental da fisica, que afirma que as leis da fisica sao
as mesmas independente do referencial, ou seja ela sao as mesmas para todos os referencial iner-
cial (referencial que estd em repouso ou ndo estd acelerando, mas se movendo a uma velocidade
constante, conhecido como movimento retilineo uniforme).

Ou seja, os resultados de um experimento fisico e as previsoes das teorias fisicas devem ser inde-
pendentes do movimento do observador. Assim, nao haveria um referencial inercial de preferéncia,
podendo qualquer um ser valido para mostrar os fendémenos fisicos. Desse modo, esse principio vai
de afastamento & fisica classica, pois afirmava que havia um referencial absoluto contra o qual os
movimentos poderiam ser medidos. Ja em contraponto, o principio da Relatividade mostra que
nao ha um referencial absoluto, isso aplica que as leis da fisica nao apresentam variacao. Ou seja,
as leis da Fisica apresentam a mesma forma em qualquer sistema inercial, independentemente de
sua orientacao ou de sua posi¢cao no espaco.

Desse modo, podemos entender que todo movimento é relativo e seria definido em relacao
ao movimento de outros objetos. O conceito de Relatividade também nos mostra a analise de
dilatacao do tempo e contragao, que de acordo com ela as conviccoes de espaco defendidas anteri-
ormente por outros cientistas, relacionadas a trés dimensoes, teriam que ser substituida por uma

andlise visando a unificacao do espaco e o tempo. Ou seja, em um continuum quadridimensional
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chamado espago-tempo, com trés dimensoes de espaco € uma de tempo que vamos observar na

teoria mostrada.

4.1.2 Postulado II : Constancia da velocidade da luz

Apos analisar o primeiro postulado acerca da invariancia das leis fisicas, onde observamos que
os principios fundamentais e as equacoes da fisica, devem ter a mesma forma nao importando
o movimento do observador. Agora, vamos observar o postulado que se trata da constancia
da luz no véacuo. Esse postulado proposto por Albert Einstein, traz uma ruptura ao modelo
proposto anteriormente por Galileu Galilei, onde dizia que a velocidade da luz, variava com base
no movimento do observador.

Assim, diferente do que era aceito anteriormente, a velocidade da luz permanece constante
independente do movimento relativo de quem observa. De acordo com o postulado, se vocé medir
a velocidade da luz no vacuo, atribuida pelo “C”, ela serd como ja vimos aproximadamente,
299.792.458 metros por segundo, independente do observador est4 em repouso ou se movendo em
alta velocidade. Esse postulado, tem implicacoes relevantes no que conhecemos sobre dilatagao
do tempo, visto sua inferéncia em relacao ao tempo, espaco e consequentemente energia que foi
amplamente estudado por Albert Einstein, ao longo de sua teoria.

Em conclusao, tanto o principio da Relatividade quanto a constancia da luz, trouxeram uma
nova visao e um impacto césmico acerca de nosso entendimento do universo. Onde, sendo base da

teoria proposta por Einstein, proporcionou uma compreensao do espaco e tempo nao antes vista.

4.2 Consequéncias dos postulados

A Partir da analise feita pelo que vimos dos Postulados, é possivel e fundamental derivar
algumas consequéncias diretas deles. Dentre muitas e significativas implicacoes, podemos compre-
ender a dilatagao do tempo, a contragao do espago e a equivaléncia entre massa e energia, que sao
além de significados teodricos, é experimentalmente aceito em aplicacoes na prética atualmente.
Esses conceitos, sao de grande importancia no estudo sobre Relatividade, pois proporciona uma
contemplagao significativa dos postulados e das anélises feitas por Einstein. Assim, nos seguintes

topicos, iremos falar sobre esses principais fenémenos e aprofundar em suas implicacoes.

4.2.1 Dilatacao do Tempo

A dilatacao do tempo, conceito esse atribuido aos estudos sobre Relatividade Especial, é um
aspecto fundamental no estudo sobre Relatividade. Visto, suas aplicacoes ao entendimento de
espaco, tempo e do comportamento de objetos em condicoes rigorosas.

Na Relatividade Especial, ela ocorre diante ao movimento relativo, podendo ser analisada
colocando dois observadores se movendo um em relagao ao outro, um estando em alta velocidade
e o outro em repouso, o que estaria em grande velocidade perceberia o tempo esta se movendo
mais lentamente em relagao o que estaria em repouso. Assim, quanto mais proximo a velocidade

da luz um dos observadores estiver, maior serd essa variacao do tempo entre os dois.
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Esse exemplo pode ser analisado, visto as contribuicdes de Hafele-Keating, que observou esse
efeito ao analisar medigoes feitas por relogios atéomicos em determinados avioes viajando em
velocidades desiguais [I7]. Podendo também ser visualizado esse efeito de dilata¢do do tempo,
calculando a observacao de dois observadores, um dentro de um carro, observando um laser sendo
disparado em um espelho no teto do carro e outro na calcada vendo o carro passar.

Dessa forma, segundo os postulados estudados o que estaria dentro do carro veria o laser na
vertical, j& ao mesmo tempo o que estaria pelo lado de fora, veria uma diagonal formando um

triangulo, como podemos ver na figura abaixo: Nela, podemos observar um triangulo retangulo

c. Aty

v. At

Figura 2: Triangulo relacionado ao esquema de referencial
Fonte: Autoria propria (2025).

que mostra como seria a andlise de Albert Einstein sobre essa variacao. Assim, podemos tomar
como cAt, sendo o deslocamento para o observador fora do carro. Ja o cAty é o deslocamento da
luz para o observador dentro do carro e o vAt seria o deslocamento do carro.

Assim, podemos encontrar essa variacao partindo da equacao de velocidade média

AS
= — 1
CTAC (18)
isolando a variacao de espaco AS, temos
AS = vAt, (19)

podemos utilizar o teorema de Pitdgoras para o triangulo proposto

(cAt)? = (vAt)® + (cAtp)?
AN = VA 4 PAL
CAE = AA? - VAR (20)

Seguindo, colocaremos em evidéncia o At? para depois isolar e fazer a raiz quadrada que vai
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possibilitar observar a variagao do tempo que queremos analisar

CAE = A (® —v?)
AL
@)
At}
At

v2

c2

— ﬂ' (21)

_v?
02

Com essa equacao, podemos observar a variacao do tempo entre dois observadores, um préximo

At? =

a velocidade da luz em relagao ou outro. Tornando necessério, apenas substituir e visualizar a
variacao do tempo entre oa dois observadores. Dessa maneira, esse fendmeno abre caminho para
entendermos que o tempo nao ¢é absoluto, ideia que sera fundamental ao tratar da gravidade como

curvatura do espaco-tempo.

4.2.2 Contracao do Comprimento

Desse modo, também podemos observar a contracao do comprimento. Pois, de modo anélogo
ao da dilatacao do tempo, podemos usar um exemplo para ilustrar imaginando assim o que ocorre
com um corpo proximo a velocidade da luz. Para isso, adotamos como dois referenciais um proximo
a velocidade da luz (AL’) e outro na terra, chamado por (AL).

Proximo a ¢, temos

L' — AL = X, — X, (22)
na terra

L—AL=X,— X, (23)

usando a transformagao de Lorentz, apéndice |8.1] e tomando v como velocidade do referencial

inercial que se move, e ¢t como o tempo, observamos

Xy =7(X2 —vt) (24)
X1 = (X1 — vt). (25)
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Subtraindo a equacao [24] pela

Xo = X1 = 97Xy — vt — (v X1 — i)
X,— X = AL

AL = X, —vX;. (26)
Colocando o v em evidéncia
AL =~(Xy — X3), (27)
e Xo — X7 = AL, encontramos
AL =~AL, (28)

tomando que o fator de Lorentz é ¥ = ——, obtemos
Vi-iz

N (29)
7

ou

2
AL=AL 41—, (30)
c

Em sintese, observar a contracao do comprimento até aqui, proporciona mostrar que o espaco
também é relativo, tal como vimos com o tempo anteriormente. Contrariando dessa forma, a
visao classica newtoniana de grandezas absolutas e evidenciando a necessidade de tratar o espaco

e tempo como de forma unificada no chamado continuo espago-tempo.
Esses efeitos, previstos teoricamente e confirmados por particulas se deslocando em altas velo-
cidades de forma experimental, tras agora uma nova perspectiva para compreender nao apenas a
equivaléncia entre massa e energia, mas posteriormente, a ideia da gravidade como a manifestacao

direta da geometria do espaco-tempo na Relatividade Geral.

4.2.3 Equivaléncia Massa-Energia

Diante o que ja vimos, trataremos de um dos principais resultados previstos pela Relatividade
restrita, o conhecimento sobre equivaléncia sobre massa e energia. Tal principio mostra como as
relagoes presentes entre massa e energia funcionam, afirmando que massa pode ser diretamente
convertida em energia e vice-versa. Essa afirmacao se da devido a conhecida equacao de Einstein,

proposta logo abaixo.

E =mdc*. (31)
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Essa simples equacao correlaciona de maneira direta como massa e energia estao diretamente
ligadas. Nela, podemos observar que (F) representa a energia total de um corpo em repouso, ja
(m) representa a massa desse corpo e (¢) como ja vimos é a representacao da velocidade da luz no
vacuo. Assim, diretamente a expressao mostra que mesmo minima a massa vai apresentar uma
quantidade relevante de energia.

Quando analisamos essa condig¢ao, observamos como a expressao mostra que conforme um corpo
em repouso recebe alguma quantidade de energia, seja ela, térmica, potencial interna, cinética entre
outras, vai contribuir no ganho de massa total do sistema. Pois, agora massa se comporta como
medida de energia interna desse corpo.

Por exemplo, se consideramos uma determinada mola e que estd sendo comprimida, logo
ganhando mais energia potencial, nela veremos segundo a Relatividade que sua massa aumenta.
Da mesma forma, se tiver uma determinada vasilha com ché e adiciono mais calor a ela também
dard mais massa a ela. Ou seja, aqui o conceito esta relacionado diretamente ao efeito que ocorre
internamente e nao s6 de forma superficial, pois no caso da mola esse energia potencial esta dentro
da mola, tendo mais energia e ja na xicara, dentro dela as moléculas vao se agitar, rotacionar e
vibrar mais, ganhando mais energia.

Essa ideia rompe com o conhecimento previsto anteriormente na Fisica classica, pois segundo
Newton, essas entidades sao separadas. De forma comparativa, podemos lembrar da expressao de
energia cinética de um corpo com massa m e uma velocidade v

1
E. = §mz}2, (32)

se considerarmos essa particula com uma velocidade proxima a da luz, é necessario o fator de

Lorentz, trazendo a forma da energia total relativistica
E =mc® + (v — 1)me?, (33)

aqui podemos separar em duas partes essa expressao, a que ja vimos na equagao [31] que é a energia

de repouso e na energia cinética relativistica abaixo
E,. = (y—1)mc, (34)
que juntando as expressoes, temos a seguinte equac¢ao para energia total na forma reduzida
E = ymc*. (35)

Dessa maneira, a equivaléncia massa-energia evidéncia que nao sao distintas entidades, mas ex-
pressoes diferentes de uma mesma realidade fisica. Além de fundamentar os estudos ligados a
astrofisica, como fusao nuclear nas estrelas e a liberacao de energia em supernovas, vai fornecer
diretamente uma base tecnolégica como as usadas em reatores nucleares, e mais Importante ainda,
ela val proporcionar ampliar o que conhecemos sobre o universo.

Pois, mostra que pequenas quantidades de massa poder se converter em grandes quantidades
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de energia como vimos, proporcionando essa transi¢ao entre o conhecimento classico e moderno.
Com isso, esse principio se conecta diretamente com a Relatividade Geral, pois além de massa e

energia serem equivalentes, vao desempenhar papel central na curvatura do espago-tempo.

4.3 Superacao das limitacoes da mecéanica classica e implicacoes para

a fisica moderna

A Relatividade restrita proporcionou grandes contribuigoes para a Fisica contemporanea, per-
mitindo entender como alguns feno6menos antes vistos pela fisica classica como sem solugao, agora
podendo serem compreendidos, assim como, suas anélise mais didaticas sao de grande importan-
cia para a construcao gradual do entendimento relativistico geral tem sido discutida por diversos
autores [10]. Além de que, a compreensao de fenomenos como dilatagdo do tempo, contracao do
espaco e a constancia da luz, abordam a ideia de dependerem do referencial abordado, sendo enti-
dades relativas agora. Junto a isso, vimos como massa e energia sao equivalentes, que propiciaram
a entender como se comporta a matéria e as novas bases para o que conhecemos sobre energia,
j& que mostra pequenas quantidades de massa pode ser convertida em uma grande quantidade de
energia.

Essa nova interpretagao sobre a matéria e energia, Possibilitou novas pesquisas e construgoes
futuras nas areas da fisica nuclear, astrofisica e Relatividade Geral, ja que, fundamenta o estudo do
funcionamento da geracao de energia em usinas nucleares quanto o comportamento do processo
de alimentacao de estrelas. Nesse contexto, o campo da experimentacao proporcionou mostrar
na pratica como os fenomenos relativisticos ocorriam, como o de contracdo do comprimento e
dilatacao do tempo, ajudando consequentemente na utilizacao dessas equacoes em equipamentos
voltados para algumas &areas, dentre elas, a espacial, com o uso comum em satélites e alguns
sistemas de navegagao, que de maneira precisa, necessitam de uma corregao relativistica, um
exemplo é o GPS, sendo utilizada essa correcao relativistica para que nao ocorresse erros no
calculo de posicao, mostrando que além de sua importancia teodrica, esse estudo é utilizado na
pratica.

Quando tratamos de invariancia da velocidade da luz, observamos uma contribuicao chave
para a ruptura com a Fisica classica, abordando as limitacoes experimentais e matemaéticas das
teorias propostas anteriormente por Galileu e Newton. Desse maneira, nao apresentando apenas
correcoes nas teorias anteriores, mas mudando um paradigma para alguma novas areas da fisica,
como a (fisica de particulas, a cosmologia e as tecnologias de alta precisao), como vimos. No en-
tanto, mesmo essa teoria explicando com sucesso os fendémenos presentes nos referenciais inerciais
e o comportamento da luz, ela ndao abrange os efeitos gravitacionais que estamos procurando en-
tender. Dessa maneira, compreender situagoes em que a gravidade apresenta o papel fundamental
¢ devidamente necessario, assim, fez-se importante uma nova formulacao ainda mais abrangente,
culminando na teoria da Relatividade Geral, que agora vai introduzir a curvatura do espaco-tempo

como a explicacao para a Gravidade.
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5 Teoria da Relatividade Geral

A Teoria da Relatividade Geral, formulada por Albert Einstein em 1915, representa uma
nova forma de compreender o espaco, o tempo e a gravidade. Diferentemente das concepcoes
newtonianas, em que a gravidade era tratada como uma forca que atrai os corpos, relacionando
diretamente o produto das massas e inversamente ao quadrado da distancia, Einstein mostrou
que o fendmeno gravitacional é, na verdade, uma manifestacao geométrica. Segundo essa teoria,
a presenca de massa e energia deforma o espago-tempo, e essa curvatura é o que vai orientar o
movimento dos corpos. Assim, a matéria diz ao espago-tempo como se curvar, e o espaco-tempo diz
& matéria como se mover, ideia que resume de forma elegante o contetido da teoria da Relatividade
Geral [24]. Dessa forma, a Relatividade Geral unifica a geometria e a fisica, revelando uma visao
mais profunda da estrutura do universo.

Para entender essa teoria, podemos partir da ideia central desse modelo. Onde mostra concre-
tamente que energia e massa distorcem o espago-tempo e consequentemente produzem uma forca
gravitacional. Com isso, entendemos que o espaco-tempo se curva, fazendo com que inevitavel-
mente influencie na vizinhanga.

Essas relacoes entre massa, energia e curvatura do espacgo-tempo estao significativamente re-
lacionadas nas equagoes de campo de Einstein, que serao trabalhadas posteriormente, nas quais
conectam o tensor métrico g,, e suas derivadas (por meio do tensor de curvatura de Ricci R,,) &
distribui¢ao de energia e momento descrita pelo tensor 7),,.

Resolver essas equacoes em diferentes contextos nos permite descrever desde o espaco-tempo
ao redor de um buraco negro até a expansao em larga escala do universo. E por meio delas que
descobrimos essas interagoes de distribuicao de matéria, energia e os efeitos gravitacionais envol-
vidos [8]. Assim, para entender esses fenomenos, sdo necessarios alguns conceitos importantes,
como o conhecimento do Tensor de Einstein, que é feito pela combinacdao de tensor métrico e
suas derivadas. Ao resolver essas equacoes, podemos entender significativamente as interacoes da
curvatura do espaco-tempo em torno de buracos negros estacionarios ou até mesmo a expansao
do universo.

De forma analoga, podemos também observar essa distor¢ao do espaco-tempo de uma maneira
mais didatica, utilizando uma espécie de cama eléstica bidimensional representando o espaco.
Que, ao ser colocada uma esfera de massa significativa sobre ela, a propria ira distorcer a cama
elastica que outrora estava reta. Assim, ao colocar outros objetos também de massa significativa,
mas reduzida em relacao ao anterior, o mesmo causaria também uma distorcao, mas relativamente
menor em relagao ao anterior, fazendo com que ele ficasse de certa forma preso geometricamente
ao de maior massa [9]. Esse exemplo proporciona, na pratica e de forma didatica, entender como
ocorre essa distorcao no espaco-tempo, podendo assim relacionar de maneira simples o entendi-
mento acerca das relagoes presentes nas 6rbitas dos planetas em torno do Sol até o comportamento
da luz perto de um buraco negro.

Apos as informacgoes vistas acima, podemos analisar o espaco-tempo rigorosamente mais sim-
ples. Pois, ao entendermos que se desprendendo das analises classicas de outrora, que abordavam

o espaco separadamente do tempo, e agora combinando essas grandezas fundamentais da fisica
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mostrada por Albert Einstein, as trés dimensoes de espago (largura, comprimento e altura) com
uma dimensao adicional de tempo. Vai ocorrer uma estrutura conhecida como estrutura qua-
dridimensional, que facilita a observacao da interferéncia sofrida por objetos proximos a campos
gravitacionais e proximos da velocidade da luz, diretamente interferindo no fluxo temporal e es-
pacial ali presentes.

Dessa maneira, a Relatividade Geral aborda que nao ha tempo absoluto nem espacgo fixo,
mas sim uma geometria dinamica que se molda a presenca de massa e energia. [Essa perspectiva
¢ fundamental para entendermos a estrutura dos buracos negros, que representam as solucoes

significativamente extremas das equacoes de Einstein.

5.1 As equagoes de campo de Einstein e a nova compreensao da gravi-
dade

Com a construgao da teoria da Relatividade Geral, Albert Einstein estabeleceu uma nova
relacao direta entre geometria do espaco-tempo e a distribuicao de massa e energia existente nele.
Diferentemente da visao classica proposta por Newton, na qual gravidade era interpretada como
uma forca que atua a distancia entre corpos massivos, Einstein, propoe que essa interacao é, na
verdade, o resultado da curvatura presente no espaco-tempo causada pela presenca de matéria e
energia [19].

Matematicamente, essa ideia é expressa pelas equacoes de campo de Einstein, relacionando o
contetido energético do universo com sua geometria intrinseca. Essas equagoes podem ser escritas

como

1 81
R;w - éRg/LV = 7Tw/- (36)

Onde:

e 7, ¢ o tensor de Ricci, que mede a curvatura do espago-tempo;

R é o escalar de Ricci, obtido pela contragao do tensor de Ricci R, com o tensor métrico

contravariante g"”, ou seja,

R=g"R,,; (37)

e g, representa o tensor métrico, que descreve a geometria local do espago-tempo;

T,, € o tensor energia-momento, que descreve a densidade e o fluxo de energia e momento

da matéria;
e (7 é a constante gravitacional de Newton, e ¢ é a velocidade da luz no vacuo.

A equacao evidencia que a curvatura do espago-tempo, representada pelos termos R, e R, estd
diretamente determinada pela presenca de matéria e energia, expressa por T),,. De forma essencial,

o lado esquerdo da equacao vai traduzir a estrutura geométrica do espaco-tempo, enquanto o lado
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direito aborda o contetdo fisico que o deforma. Dessa maneira, matéria e energia nao apenas
estao presentes no espaco-tempo, mas moldam propriamente a sua geometria.

Em regioes do espago onde nao ha matéria ou radiacao, isto é, no vacuo, o tensor energia-

momento vai se anular

Tuu = 07 (38)
e as equacoes de campo assumem a forma simplificada

R,, =0. (39)

Como destaca Carroll [13] as equacdes de Einstein no vacuo é simplesmente R,, = 0. Isso
¢ um pouco menos intimidador e de consideravel utilidade fisica, essa forma das equacoes de
Einstein, valida no vacuo, ¢ fundamentalmente importante pois descreve como o espaco-tempo
tempo se comporta na auséncia de fontes materiais, proporcionando a busca de solugoes exatas
para caracterizar os campos gravitacionais puramente geométricos.

Dessa maneira, foi justamente ao resolver essas equacgoes no caso estatico e esfericamente
simétrico que Karl Schwarzschild, em 1916, encontrou a primeira solucao exata da Relatividade
Geral, conhecida como a métrica de Schwarzschild. Essa solu¢ao, vai descrever o comportamento
do espaco-tempo ao redor de uma massa pontual ou de um corpo esférico nao rotativo e sem carga
elétrica.

Essa formulagdo marca uma das maiores conquistas da teoria fisica moderna, pois a partir
dela passamos a observar a Gravitacao nao como uma forca analisada pela geometria newtoniana,
mas uma manifestacao da geometria presente no universo. Desse modo, fendmenos como o desvio
gravitacional da luz, o avanco do periélio de Merctrio e existéncia dos buracos negros, puderam

apresentar ser explicados de forma natural dentro do arcaboucgo geométrico.

5.2 Previsoes da teoria: avanco do periélio de Mercitrio, desvio da luz

por campos gravitacionais

A teoria mais geral da relatividade nao apenas trouxe um novo conceito sobre gravidade, mas
também apresentou previsoes observacionais de grande relevancia para sua consolidacao como uma
teoria fisica fundamental. Einstein, desde sua formulacao, buscou a aplicagao de suas equagoes
em situagoes concretas, proporcionando a explicagao de diversos fenomenos astronémicos atraveés
da curvatura do espago-tempo [23].

Dentre as previsoes, destaca-se o avanco no periélio de Merctrio, o desvio da luz por campos
gravitacionais e a propria existéncia de buracos negros, como consequéncia rigorosa das equa-

¢oes de campo.
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5.2.1 Avanco do periélio de Mercurio

Observamos no decorrer do trabalho que as leis de Newton representaram grande relevancia
na ciéncia, ja que permitiram concretamente analisar muitos problemas presentes na natureza,
com explicacoes e previsoes importantes como a propria lei da gravitacao universal. No contexto
astronomico, essa lei é fundamental pois garantia desde a descricao de orbitas a descoberta de
novos corpos planetarios.

No entanto, em décadas, astrénomos observaram que o ponto de maior aproximacao de Mer-
curio ao Sol (periélio) apresentava uma precessao adicional que nao poderia ser explicada concre-
tamente pela gravitacao newtoniana [5]. Essa diferenca se aproximava de (A¢ ~ 437), ou seja,
segundos de arco por século, valor comprovadamente incompativel com as previsoes cléassicas [14].
Ao aplicar as equacoes de campo previstas pela teoria de Einstein, ao sistema Sol-Merctrio, foi
demonstrado que a curvatura do espago-tempo solar gera precisamente esse acréscimo, abordando
o problema de antes de forma satisfatoria, trouxe uma das primeiras confirmacoes da Relativi-
dade Geral [16].

Merctrio

Figura 3: Representacdo esquematica da precessao do periélio da orbita de Mercurio ao redor do Sol,
mostrando o deslocamento gradual do ponto de maxima aproximacao devido a curvatura do espago-tempo.
Fonte: Autoria propria (2025).

Podemos observar que a érbita de Mercurio nao fecha sobre si mesma apo6s cada revolucgao.
O periélio se desloca no sentido do movimento orbital, representado pelas sucessivas elipses que
apresentam uma rotacao progressiva. Esse comportamento é explicado pela Relatividade Geral,

ao considerar a deformacao do espago-tempo causada pela grande massa solar.

5.2.2 Desvio da luz por campos gravitacionais

Os primeiros calculos do desvio da luz pela gravidade foram realizados por Soldner, em 1801,
dentro da o6tica newtoniana. No entanto, embora sua abordagem previsse uma deflexao luminosa, o
valor obtido era apenas metade do que seria posteriormente encontrado por Einstein [18]. Quando

tratamos da Relatividade Geral, a luz passa a ser entendida como seguindo geodésicas do espaco-
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tempo curvo, onde sofre naturalmente um desvio ao se propagar em regides proximas a corpos
massivos.

Einstein entao recalculou o angulo de deflexdo previsto para a luz ao passar proximo ao Sol,
obtendo o valor correto, que foi confirmado experimentalmente em 1919 pelas medigoes de Arthur

Eddington durante um eclipse solar total.

-
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Posigdo Aparente

Figura 4: Representacao esquemaética da deflexdo da luz ao passar proxima ao Sol devido a curvatura do
espago-tempo.

Fonte: Autoria propria (2025).

Conforme ilustrado na Figura [4] a trajetoria da luz é desviada ao se propagar em regioes de
forte curvatura do espaco-tempo. Esse resultado tornou-se uma das primeiras e mais importantes
verificagoes observacionais da Relatividade Geral, consolidando o novo modelo gravitacional [18].

Atualmente, o fendmeno da lente gravitacional é essencial para a astrofisica e cosmologia
modernas, permitindo observar e estudar objetos extremamente distantes no Universo, muitas

vezes inacessiveis por outros meios.

6 Buracos Negros

As concepgoes primérias sobre os buracos negros remontam ao século XVIII. Em 1783, John
Michell analisou utilizando apenas os principios da mecanica newtoniana e a lei da gravitacao
universal, como uma dada estrela extremamente massiva e compacta teria ao seu redor um campo
gravitacional muito forte, ndao deixando nem mesmo a luz sair. Objeto esse denominado por
ele como "Estrelas escuras", nao poderia ser vistos de forma direta, mas sim por sua influéncia
gravitacional a outros corpos. Posteriormente, Laplace em sua obra Fzposition du Systeme du
Monde [21] traria uma relevante observagido sobre esses objetos, que dizia ndo serem observaveis
por impossibilitar a luz de escapar, propondo a ideia de “corpo escuro”, ou seja, esses astros seriam

de certa forma invisiveis, pois impossibilitavam a saida de luz. Dessa maneira, as primeiras anélises
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referentes a esses fenomenos gravitacionais sao feitas de forma classica, nao trazendo mencoes a
curvatura do espago-tempo.

Porém, somente no século XX, com o desenvolvimento da Relatividade Geral de Einstein, os
estudos sobre buracos negros ganhou rigorosamente um carater matematico no seu desenvolvi-
mento com Karl Schwarzschild, em 1916. Pois de maneira correta, desenvolveu a primeira solucao
exata das equagoes de campo de Einstein, também conhecida como a solugao que descreve o bu-
raco negro de Schwarzschild [22]. Ao qual é caracterizada por uma simetria esférica e auséncia
de rotacao. Posteriormente, John Wheeler, em 1968, cunhou o termo “Buracos negros”, que foi
popularizado no meio cientifico.

Com isso, partindo da lei de conservagao da energia mecanica, podemos deduzir a velocidade
de escape de um corpo celeste e, em seguida, a condicao necessaria para a formagao de um buraco
negro no contexto newtoniano. Primeiramente partiremos da energia total de um corpo de massa

m sob a influéncia gravitacional de um corpo massivo de massa M e raio R

E = E.+ LB, (40)
onde, . = %va ¢ a energia cinética, I, = —G]gm é a energia potencial gravitacional. Para que

o corpo escape do campo gravitacional, sua energia total deve ser zero no infinito

1 M

§mvg — _GRm =0
1, GM
- - 41
2Ue R ? ( )

multiplicando ambos os lados por 2, encontramos a velocidade de escape

, 2GM
v, = ———

¢ R

[2GM
42
Ue R 9 ( )

dessa maneira, se nem mesmo a luz consegue escapar, a velocidade de escape deve ser maior ou

igual a velocidade da luz ¢

N 2GM S
Ve > C — >c
R
2GM 9
= > ¢
R
2GM
R < 2 (43)
proporcionando encontrar o valor critico abaixo
2GM
R, = 2 (44)

Nessa expressao, R, é conhecido como raio de Schwarzschild e define o tamanho do horizonte de
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eventos de um buraco negro nao rotativo no contexto da Relatividade Geral. A deducao acima
mostra como, mesmo a partir da mecanica classica, ja se tornou possivel prever a existéncia de
corpos com gravidade tao rigorosamente forte, que evitavam que até a proépria luz conseguisse
escapar. Esse limite, que representamos como raio de Schwarzschild, assume um papel importante
na Relatividade Geral, pois sendo interpretado como horizonte de eventos de um buraco negro,
nos mostra em outras palavras que qualquer objeto ou radiacao que ultrapasse essa fronteira nao
conseguira retornar, sendo confinada a regiao do buraco negro.

Essa transicao do formalismo Classico para o tratamento relativistico mostra uma robustez
da ideia central sobre o estudo de buracos negros, mas também, a necessidade de uma geometria
do espago-tempo que mostra a compreensao dos fendomenos associados a esses objetos de extrema
forca gravitacional, explicando como algumas concepgoes classicas sobre a trajetoria da luz por
exemplo, sao diferentes agora no contexto relativistico.

Dessa forma, a evolucao desse conceito, remonta uma transicao importante na area gravitaci-
onal, pois caminha de uma primeira hipotese seguramente classica para uma previsao inevitavel
na Relatividade Geral. Com isso, sendo caracterizados como uma regiao do espaco-tempo na
qual a gravidade é tao alta que nada possa escapar, podemos partir para pontos principais que
caracterizam eles.

O raio de Schwarzschild, embora aqui sendo analisado a partir de consideracoes cléssicas, vai
adquirir um significado fisico muito mais rigoroso na Relatividade Geral, jA que vai definir o
limite além do qual nenhuma informacao pode ser transmitida para o exterior. A partir disso,
a descricao dos buracos negros se organiza em torno de conceitos mais fundamentais, como a
singularidade central, o horizonte de eventos e os efeitos observaveis no espago-tempo ao redor,

que serao seguramente detalhados a seguir.

6.1 Horizonte de Eventos

O horizonte de eventos é uma das caracteristica mais fundamentais dos buracos negros. Pois,
de maneira sistematica trata-se de analisar o que define o limite da regidao observavel e a de
nao retorno no espaco-tempo, ja que nela a atracao gravitacional é intensa o suficiente para que
nem mesmo a luz nao escape. Na solucao de Schwarzschild, que analisaremos posteriormente,
esse fendmeno estd presente no que chamamos de raio de Schwarzschild o qual ji encontramos
utilizando uma analogia classica

Diferentemente de uma superficie material, o horizonte nao é diretamente uma barreira fisica,
mas uma determinada barreira causal e matematica, dessa maneira qualquer evento que aconteca
dentro dessa regiao estudada nao poderé afetar um observador externo a ela. Ja que, o horizonte
de eventos vai atuar como um ponto sem retorno, mostrando o que conhecemos de transicao a
parte acessivel e nao acessivel do interior do buraco negro. Podemos com isso fazer uma analogia ao
que entendemos sobre a natureza relativa do tempo devido aos limites observaveis que o horizonte
de eventos propoe na observacao. Um objeto que se aproxime dessa regiao serd analisado por
um observador distante, como parecer desacelerar, e nunca realmente atravessar completamente

o horizonte, ja que os efeitos de dilatacao temporal da Relatividade (eral apresentam isso. No
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entanto, quando analisamos o proprio objeto em queda, a travessia ocorrerd em tempo finito,
ilustrando a natureza relativistica do tempo e do espaco préoxima a buracos negros.

Assim, podemos notar que esse limite tem uma natureza geométrica significativa, que depende
diretamente da massa do buraco negro. Isso fortalece a relacao direta entre a massa do objeto
e a forca do campo gravitacional que ele gera. A deteccdo direta desses sistemas compactos
tem sido dificultada pela propria intensidade desse campo. No entanto, a presenca dos discos
de acregao facilitou bastante sua observagdo. Como destacado por [I3], buracos negros possuem
campos gravitacionais extremamente fortes. Portanto, uma das formas mais eficientes de detecta-
los é analisando o comportamento da matéria em suas proximidades. Quando o gis ou outros
materiais se aproximam de um buraco negro, eles aquecem gradualmente e comecam a emitir
radiacao, geralmente na faixa dos raios X. Isso permite que sejam detectados por observatorios
espaciais.

No entanto, vale ressaltar que o disco de acrecao nao estd incluido na solucao idealizada
apresentada por Schwarzschild, que descreve o espaco-tempo externo a uma massa esférica, estatica
e isolada. Essa solucao de vicuo nao considera a matéria circundante, os fluxos de gas, as colisoes
ou qualquer mecanismo que cause dissipacao. Ainda assim, no cenario astrofisico, buracos negros
reais costumam estar rodeados por discos de acrecao, formados pelo acimulo de gas, poeira e
detritos que orbitam e, aos poucos, perdem momento angular até atravessarem o horizonte de
eventos.

Durante esse processo de queda, as particulas do disco experimentam atrito e compressao, o
que aumenta sua temperatura e faz com que emitam radiacao eletromagnética de alta energia.
Portanto, mesmo que o disco de acrecao nao esteja incluido na estrutura matemética da solucao de
Schwarzschild, ele desempenha um papel fundamental na observacao desses objetos, possibilitando
a estimativa de parametros como a massa do buraco negro e sua taxa de acrecao. FEmbora seja
importante para a astrofisica, o disco de acrecao nao é o foco principal deste estudo.

A mencao a ele aqui visa situar sua funcao na deteccao observacional de buracos negros e
contextualizar a aplicagao fisica da métrica de Schwarzschild. Essa descricao ainda é valida para
caracterizar a geometria do espaco-tempo fora do horizonte de eventos, area em que o regime de

vacuo é uma aproximagao apropriada.

6.2 Singularidade

No centro de um buraco negro, segundo a Relatividade Geral, podemos encontrar a chamada
singularidade gravitacional. Onde, trata-se de uma regiao no qual certas quantidades geométricas
como a densidade efetiva da matéria e os escalares de curvatura tendem ao infinito. Em termos
conceituais, seria o ponto em que toda a massa do buraco negro estaria concentrada em um
volume que se aproxima de zero, e a curvatura do espaco-tempo se torna ilimitada. Essas previsoes
impostas sugerem que a teoria, deixa de fornecer descri¢oes fisicas validas nessa regiao.

Quando analisamos Matematicamente, a singularidade surge como solucao das equacgoes de
Einstein, de forma particular na métrica de Schwarzschild, quando » — 0. Nesse limite, as gran-

dezas fisicas como densidade de energia e curvatura, deixam de serem descritas de forma finita,
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indicando uma quebra no poder explicativo da teoria. E importante ressaltar, porém, que a mae
existéncia de uma singularidade nao significa necessariamente que a natureza apresente de fato
esses infinitos fisicos, mas sim, apenas propoe o limite de aplicabilidade da teorica relativistica.
Devido a isso, ¢ muitos vezes vista a singularidade como possivel indicio de que haja uma te-
oria mais completa da Gravitagao - como por exemplo, unindo a Relatividade com a Mecanica
Quantica, para descrigao mais adequada do interior de um buraco negro.

Fisicamente, a singularidade est& representada como a regiao inacessivel de um buraco negro.
Ou seja, qualquer particula ou radiacao que ultrapasse o horizonte de eventos que vimos ante-
riormente, serd inevitavelmente conduzida ao centro, atingindo a singularidade em tempo finito
conforme seu proprio referencial. Dessa forma, ela atua como uma espécie de fim de trajetoria no
espago-tempo, ja que todas as geodésicas convergem.

Conceitualmente, a ideia traz implicagoes profundas, ji que questiona até mesmo onde nossa
abordagem teorica fisica pode ser estendida. Portanto, a singularidade dos buracos negros consti-
tui ndo apenas o centro matematica da solucao de Schwarzschild, mas também vai propor o limite
do conhecimento fisico atual. Mostrando nesse ponto um dos maiores desafios da ciéncia contem-

poranea.

6.3 Meétrica de Karl Schwarzschild

Um dos principais resultados da Relatividade Geral foi obtido em 1916 por Karl Schwarzschild,
que encontrou a primeira solucao exata das equacoes de campo de Einstein. Essa solucao propoe
descrever o espago-tempo fora de uma distribuicao de massa esférica, estatica e nao carregada,
sendo a base para o estudo da geometria de um buraco negro simétrico que procuramos entender
no andamento dos capitulos.

Para realizar a deducao analitica da solucao, inicia-se considerando o caso mais elementar: um
espaco-tempo sem curvatura, denominado espaco-tempo plano. Esse tipo de geometria é descrito

pela métrica de Minkowski
ds® = —dt* + do* + dy* + dz*. (45)

Essa métrica ¢ o ponto de partida para comparacoes com geometrias mais complexas, como a
métrica de Schwarzschild, permitindo avaliar como a gravidade altera a estrutura do espaco-
tempo. Dessa forma, a Eq. esté escrita nas coordenadas cartesianas (¢, z,y, z). Para problemas
com simetria esférica, como no caso da solucao de Schwarzschild é conveniente usar coordenadas
esféricas (t,r,0, ¢).

ds® = —dt® + dr? + r2d6? + r2sin2 0 d¢?. (46)

Dessa maneira, sabendo que as equagoes de campo de Einstein sao expressas pela equacao |36, e
como vimos anteriormente, fora da distribuicao de matéria, o tensor energia-momento se anula
no vacuof38 Com isso, como estamos interessados na solugao fora de um corpo esférico, nos

preocupando com a equagao de Einstein no vacuo A métrica procurada deve ser estatica
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(sem termos cruzados e sem dependéncia temporal) e apresentar simetria esférica, de modo que a
parte angular mantenha a forma r2df? + r?sin® 0 d¢?. As propriedades de simetria esférica estdo
associadas a existéncia de trés vetores de Killing independentes na (S?), conforme demonstrado
no Apéndice [8.3

Admitindo que os coeficientes dependam apenas da coordenada radial r, a métrica mais geral

compativel com essas exigéncias pode ser escrita como
d52 = _QQOC(T)dtQ + GQB(T)CZTQ + 627(7“)7426“-22’ (47)

onde dQ? = df? + sin” 0 d¢>.

Pode-se ver que a assinatura da métrica permanece a mesma, mesmo com a introducao das
funcoes exponenciais nos coeficientes. Para simplificar sua forma, é conveniente eliminar essa
dependéncia exponencial por meio de uma mudanca na coordenada radial, introduzindo uma

nova coordenada 7. Expressa por
F=e"r. (48)

Assim, introduzimos essa nova coordenada 7, de forma a absorver a func¢do ~(r) e fazer com que
os termos angulares assumam a forma padrao 72d€)?, preservando a simetria esférica.

Derivando a Eq.(48) em relagao a r, obtém-se a expressio diferencial

dry
dr = e’ (1421 dr 49
e (+'r’dr> : (49)

Elevando ambos os lados da Eq. ao quadrado e isolando dr?, encontramos

d —2
dr? = =2 (1 + r—dfy) dr?.
T

Substituindo esta relacdo na métrica inicial, obtemos a nova forma em termos de (¢, 7,6, ¢)

, . dy\~°
05 — 22 4 280 () (1 . d_W) U a0
r
d —2
= —0dt? + 200 <1+rd—7) dr? + 72dQ2. (50)
r

Considerando o caso particular em que v(r) — 0, ou seja, eliminando a reparametrizacao radial,

temos r — r

-2
2B)—23(r) (1 . TZJ) , 280) (51)
T

Assim, a Eq.(B0) retorna a forma padrio da métrica

ds? = —e*Wdt? 4+ 2P0 dr? 4 12402, (52)
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Essa forma revela explicitamente a natureza estatica e esfericamente simétrica do espaco-tempo
fora de uma distribuicao de massa.

As componentes covariantes sao dadas por

Gt Gir  Gto i
9rt Grr Gro  Gr

Guv = i . (53)
Got  Gor Goo Goo

9ot Yor  9e0 9o

Onde;
—e2 0 0 0
0 e¥0 0 0
v — s 54
I 0 r? 0 (54
0 0 7r2sin?6
e as contravariantes correspondentes
= 00 0
1
g,u,l/ — 0 e2B(r) 0 0 (55)
0 0 7%2 0
0 0 0 ogmg

Os simbolos de Christoffell associados a métrica, Eq.7 sao obtidos a partir da relacao

1 89@ agﬁ agaﬁ
T p P
Fas = 59‘”’ <3x5 T e T Oar ) (56)

sendo os valores nao nulos dados por

It = 0.a(r),

, = & Poa(r),
F:r = 8T/B(T)7

26 - —7’6_2’8,
by = —re” P sin? 0,

1

6 _ 1é _
Fr@ - FT¢ - ;7
anﬁ = —sinfcosb,
Fgaﬁ = cotf, (57)

encontramos as componentes nao nulas do tensor de Riemann, ao qual descreve a curvatura do
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espaco-tempo
P — P _ P P A _ TP A
R opv aﬂr vo al/r po +T ,u)\F vo r V/\F po*
Usando as conexodes nao nulas, obtemos

Rtrtr - _aTFttr + FttrFTrr - Ftrtrttr
= —0,.(0,a) + 0,a0,8 — (0,a)*
= 0,00, — 0%a — (0,a)”.

Ry = 0Ly — 0oLty + TiaIpy — Dol
= Firrgé
= Oy (—re %)

= —re $9,q,

R@w - atrfédv — 0T’ idv + T%Féqﬁ - Ffmrﬁp
_ t T
= Iuls
= Oy~ (—re *sin? )

28 sin% 00, «,

= —re
bro = O0rThg — 0gl7g + Ti\Lag — Th,T7
= 0,Tpy + 7, T — T Toel7,
= O(—re )+ (B8 (e ) - (re ()
= P L2798 —re 0.8+ e
= re 0,5,

oo = 0Ly — OpL, + TT\IG, — TG00,
= 0Ty, + 7T — TyuI7,
= 0.(re P sin®0) + 0,.6(—re ¥ sin?0) — (—re 2 sin®4) - %
= —e Psin®0 4+ 2re P sin? 00,5 — re *? sin? 09,8 + e 2 sin% 0
= re *?sin 60,0,
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Ry = 0gThs — 059y + Toalay — TosT0,
= 0%, + 15,17, — 5,5,
= 0Op(—sinfcosh) + % - (re"* sin#) — (—sinf cosf) - Z?ﬁg
= —[cosfcosf 4 sinf(—sinf)] — e sin? @ + cos? 4
= —(cos’ —sin®f) — e *’sin? O + cos? 0
= —cos’ 0 +sin® 0 — e > sin? 0 4 cos® 4
= sin?f — e P sin? 0

= sin?0(1 — e ).
Contraindo o tensor de Riemann, obtemos o tensor de Ricci
A A
R, =R, =0,1", —0dI",, + Fpp/\F o re,r o
As componentes nao nulas sao

2
Rtt = 62(0[_5) 6304 + &a&ﬂ — (&Q)Q + ;&a s

2
RT’T = —8306 — (87«0{>2 —+ araarﬁ + ;87'/87
Ry = e [r(&ﬂ — 87»(1/) — 1] +1,
R¢¢ = sin2 (9R99.

O escalar de Ricci é o traco, ver apéndice 8.2
v r 6
R=g"R, =R + R +Ry+ R,
Impondo o vacuo, Ry =0 e R, =0, temos

O*a + (0,a)* — 0,00, + %&a = 0,

2
—0*a — (0,0)* + 0,00,8 + ;&6 = 0.
Somando as equacoes, obtemos
2
;(ara + arﬁ) =0,

integrando a relagao obtida na Eq., temos

/&a(r) dr = —/@5(?) dr,
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o que resulta em

a(r) = —B(r) +¢, (71)

sendo ¢ uma constante de integragao.

A partir de Rgy = 0, temos
e 2P[r(0,8 — 0ra) — 1] +1 =0, (72)
ou, equivalentemente,
Oy (re*™) = 1. (73)
Integrando, encontramos

re*® +cp =1+ ¢y,

R
1= 74
e =, (74)

onde Ry = ¢y — ¢;. Substituindo €2 na métrica, temos

ds? = —e>Mq? + 20 qr? 4 12402
= —e*0dt? + e Vdr? 4 r2d0?

-1
_ (1 _ i) a2 + (1 _ i) dr? + 2402,
r r

No limite de campo fraco, R, = 2G M, obtendo-se

2GM 20GM\ !
ds? = — (1 — ) dt* + (1 _ 2 ) dr? + r?dQ?. (75)

r r

A meétrica corresponde & solucao de Schwarzschild, que descreve o espaco-tempo gerado por um
corpo estatico e esfericamente simétrico.

Com isso, essa métrica apresenta propriedades fundamentais significativas. Quando r — oo,
recupera-se o espaco plano de Minkowski, indicando que o espago-tempo é assintoticamente plano.

Ou seja, Quando r — 0o, os termos % tendem a zero, de modo que
g — =1, g — +1, (76)
e a métrica se reduz ao esperado na teoria
ds* ~ —cdt* +dr® + r?dQ?, (77)

que ¢é exatamente o espac¢o plano de Minkowski em coordenadas esféricas.

Em r = R, surge o horizonte de eventos, que, como discutido anteriormente, vai representar
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a fronteira a partir da qual nenhuma informacao pode escapar, nem mesmo a luz. Nessa regido,

os coeficientes da métrica assumem comportamentos caracteristicos

R,
g = — (1 - 7) — 0, (78)

RN\
Grr = (1——) — 00, (79)

r

Essas condicoes indicam o aparecimento de uma singularidade de coordenadas, associada nao
a uma curvatura infinita, mas a uma superficie-limite do espago-tempo o horizonte de eventos a
partir da qual nenhuma influéncia causal pode alcancar um observador situado no infinito. Ja
no limite » — 0, a curvatura do espago-tempo torna-se infinita, caracterizando a singularidade
central. Nessa regiao, os invariantes de curvatura divergem, e as leis conhecidas da Fisica deixam
de descrever adequadamente o comportamento da matéria e da geometria, marcando os limites
de validade da Relatividade Geral.

Portanto, a solugao de Schwarzschild ilustra a base matematica para o estudo da geometria do
espaco-tempo em torno de buracos negros simétricos, foco central deste trabalho. Como também,
mostra implicacao da Relatividade Geral ao reformular as nogoes de gravidade: nao mais como

uma forca, mas como a expressao direta da geometria do espaco-tempo em torno de uma massa.

7 Conclusao

Ao longo deste trabalho, buscou-se compreender, de forma conceitual e matematica, a geo-
metria do espaco-tempo em torno de um buraco negro simétrico, tomando como base tedrica a
Relatividade Geral de Albert Einstein. A partir de uma abordagem que caminhou desde os fun-
damentos da mecanica classica até o formalismo relativistico, foi possivel notar como as func¢oes
tradicionais acerca de espaco e tempo, que antes eram vistos como absolutos, deram lugar a uma
concepcao unificada e inteiramente dinamica dessas entidades, cuja curvatura agora é determinada
pela presenga de massa e energia.

Dessa forma, ao longo do estudo, é evidente a profunda mudanca de paradigma pela Relativi-
dade Geral, que trouxe uma nova interpretacao a gravidade, nao mais como for¢a de atracao entre
corpos, mas como manifestagdo geométrica do espaco-tempo. Essa nova maneira de ver a gravi-
dade permitiu explicar fendémenos que a fisica newtoniana nao conseguia descrever precisamente,
como o avanc¢o do periélio de Mercurio, a deflexao da luz em campos gravitacionais e, de modo
especial, os buracos negros.

Com isso, a partir da solucao exata das equacgoes de Einstein para o caso estatico e esferi-
camente simétrico (métrica de Schwarzschild), foi possivel analisar os principais elementos que
vao caracterizar um buraco negro. Como horizonte de eventos, singularidade e o comportamento
da matéria proximo a essas regioes. ssa métrica tornou-se uma das solugoes mais elegantes da
fisica moderna, pois traduz com precisao essa relacdo direta entre geometria e gravitacao. Além

disso, a compreensao da métrica de Schwarzschild e suas implicacoes oferece essencialmente um
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caminho para o entendimento de fenomenos astrofisicos extremos e para o desenvolvimento de
modelos cosmologicos mais amplos. Em termos educacionais e cientificos, este trabalho reforca
a importancia de aproximar o estudante da fisica tedrica, mostrando uma visdao geométrica do
universo e destacando de forma concreta a relacao entre matematica e os fenomenos naturais. O
estudo sobre a geometria do espago-tempo em torno de buracos negros, portanto, nao vai apenas
aprofundar o entendimento sobre a natureza da gravidade, mas também ampliar a perspectiva

sobre o funcionamento do universo.
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8 Apéndice

8.1 Transformacoes de Lorentz

As transformacoes de Galileu, utilizadas na mecénica classica, pressupoem que o tempo é
absoluto e que as leis da fisica permanecem invariantes em todos os referenciais inerciais. No
entanto, esse conjunto de transformacoes se mostrou inadequado para descrever fendomenos eletro-
magnéticos. Dessa forma, a incompatibilidade entre o eletromagnetismo classico e a abordagem
newtoniana levou a necessidade de reformular o conceito de espaco e tempo e buscar transforma-
¢oOes que respeitassem os postulados fundamentais da Relatividade propostos por Albert Einstein.

Lorentz, em 1904 descobriu um conjunto de transformacoes que deixava inalterada a estrutura
matematica das equacoes de Maxwell, garantindo sua covariancia mesmo quando se realizava uma
mudanca de referencial inercial. Dessa forma, seu resultado propos propriedades profundas do
espago-tempo e antecipou aspectos essenciais da Relatividade Restrita.

As transformacoes de Lorentz explicam a relacao entre as coordenadas de espaco e tempo em
dois referenciais inerciais que se movem com velocidade constante. Considerando que o referen-
cial §" se move com velocidade constante v ao longo do eixo x em relacao ao referencial S, as

transformacoes sao dadas por

= vz —ut),
y o= v
7 = z,
VT
t = 7<—§), (80)
onde o fator de Lorentz é definido por
B 1
/y - v2 )
-z
1

= —. (81)
V-

Sendo, 5 = v/c o parametro adimensional de velocidade. As coordenadas y e z vao perma-
necer inalteradas, pois o movimento relativo ocorre apenas na direcao do eixo x. Dessa forma, a
principal diferenca entre as transformacoes de Lorentz e as transformacoes de Galileu é que, além
de juntarem espaco e tempo, as transformacoes relativisticas introduzem dependéncia temporal
e espacial na determinacao simultanea de eventos, trazendo ruptura com o conceito de tempo
absoluto.

Além disso, um aspecto fundamental é que, para velocidades muito menores que a velocidade
da luz (v < ¢), o fator de Lorentz se aproxima de 7 &~ 1. Nesse limite, as transformagoes
de Lorentz reduzem-se as transformacoes de Galileu, mostrando como a mecanica cléssica surge

como um caso particular da Relatividade restrita para baixas velocidades.

44



Ja para velocidades proximas a da luz (v & ¢), as transformagcoes de Galileu deixam de ser
precisas, pois ignoram a variacao relativistica do tempo e do espaco. Nesse regime, apenas as
transformacoes de Lorentz descrevem corretamente os fendmenos fisicos, evidenciando a falha da
abordagem galileana em altas velocidades. Dessa maneira, as Transformacoes de Lorentz desem-
penham um papel central na fisica moderna, garantindo a compatibilidade entre os postulados da
Relatividade Restrita e o comportamento do eletromagnetismo, além de estabelecerem a estrutura

geométrica do espago-tempo relativistico.

8.2 Calculo da Curvatura Escalar de Ricci

Neste apéndice é apresentado o célculo detalhado da curvatura escalar de Ricci para uma
métrica estatica e esfericamente simétrica. O ponto de partida é a definicao do trago do tensor de

Ricci:
R=g"R,, =R' =R\, + R, +R)+ R, (82)

Os componentes mistos do tensor de Ricci sao dados por

e

1 2a 2
¢ 2 2 z
R, = o [625 (@a + (0ra)® — 0,00, 5 + T&a)}

= —e 28 {Gfa + (0,a)? — 0,00, + %&a} ,

R'. = 28 [—Gfa — (0,a)? + 0,00, 3 + %&ﬁ} ,

1,
RY = s (e [r(8,8— 0r) — 1] + 1),
R¢¢ = m [Sin2 0 (re’Q'Ba,,B —re $9,a —e 2 4 1)} . (83)

Realizando as substituicoes apropriadas, obtém-se a expressao da curvatura escalar

R = |—e% (8,2,04 + (0,a)? — 0,00, + %&a)}

o [ <_aza — (0a)? + 0,00, + %07»6)}

r.—28 —28 -2 q
v 98- "8a-< +—2}

T r r r

[e—28 e28 e 28 1
0.p — ora — — 84
* r p r ¢ r? * 7’21 (84)

Simplificando os termos, tem-se finalmente
—28 | 42 2 2 1 —28
R = —2¢ d,a+ (0,0)" — 0,a0,8 + —(0ra — 0,8) + (L —e™ )| . (85)
r r
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A relagao entre as fungoes a(r) e 5(r), presentes nos expoentes que multiplicam os coeficientes da
métrica na Eq.(52)), ¢ obtida impondo as condi¢oes Ry =0 ¢ R, = 0:

2
Ry = 1920+ (0,0)? — 0,00, + ~d,a| =0, (86)
r
2
R,, = —0%a— (0,0)*+ 0,a0,8+ ~0,8=0. (87)
r
A partir das Eqgs. e (87), obtém-se o seguinte sistema:
2
O*a + (0.0)* — 0,00,8+ ~0,a = R0,
r
2
—0?a — (0,0)* + 0,00,8 + =0, = R,,. (88)
r
Subtraindo as equacoes acima, chega-se & seguinte relacao entre as derivadas das funcoes
2
—(0ra+ 0.p) =0. (89)
”

Esta relacdo mostra que as fungoes «(r) e B(r) estdo relacionadas de forma que sua soma é
constante, o que simplifica significativamente a forma da métrica, auxiliando na determinacao da

solucao final.

8.3 Vetores de Killing da 2-Esfera (5?)

Neste apéndice, abordaremos a dedugao explicita dos vetores de Killing da esfera (S?), isto
é, os campos vetoriais que preservam a métrica sob transformacoes infinitesimais. Esses vetores
estao associados diretamente as simetrias de rotacao da superficie esférica, onde desempenham
um papel fundamental na compreensao das isotropias presentes na métrica de Schwarzschild. A

métrica da esfera de raio a é expressa por
ds* = a*df? + a®sin® 0 d¢*. (90)

A equacao de Killing é escrita em termos das derivadas covariantes e requer o conhecimento dos
simbolos de Christoffel associados a esta métrica. Relembrando os resultados obtidos anterior-

mente, temos os componentes nao nulos
Fie = ng) = cot 0, I, = —sinfcosd. (91)

A derivada covariante de um vetor V' é dada por

ViV =0,V* + ngVC. (92)
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Aplicando a equacao de Killing componente a componente, iniciamos pelo caso a = b = 6. Obte-

mos
VX! + VXl =0 = VX=0.
Substituindo a expressao da derivada covariante, temos
VoX? =9y X% — T4, X% —T9,X?.
Como I'§, = Fg’e = 0, a equagao se reduz a
X" = 0.
Logo, a componente X? é independente de 6, dependendo apenas de ¢
X’ = f(9).
Prosseguindo com o caso a = b = ¢, a equacao de Killing torna-se
VyX? =0.
Desenvolvendo a derivada covariante

¢ _ é 6 0 ¢ o

Como anﬁ = —sinfcosf e F% = 0, obtemos
0x°®
¥ = —sinfcosb f(9).

Integrando em relagao a ¢, resulta

X% = —Sinﬁcosé/f(qb) do +g(0),

onde g(f) é uma funcdo ainda indeterminada.

(93)

(94)

(96)

(98)

(99)

(100)

Agora consideramos o caso misto a = 0 e b = ¢, que fornece a ultima equacao independente

VX% + VX7 = 0.
Cada termo é calculado separadamente. O primeiro é

VoX? = 0pX? — T3, X% = 9X° — cot 6 X,
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e o segundo termo é
VX! = 0,X" —T5, X% = 9,X" — cot 0 X°. (103)
Assim, a equagao de Killing se torna
0o X%+ 0,X? —2cot§ X? = 0. (104)

Podemos agora refinar a equacio mista utilizando as expressoes previamente obtidas para X% e

X?. Assim, escrevemos

DX — By (—smecose / () do + g(e)) , (105)
calculando essa derivada
0pX? = (sin?# — cos®0) / f(p)do + dfl—(:), (106)
enquanto
0, X" = %. (107)
Substituindo esses resultados na equacio obtemos
(sin? @ — cos? f) /f ) do + d(9> df(j) — 2cot f ( smecose/f ) do + g(0 )> . (108)

Simplificando o termo a direita e usando cot 6 (sin 6 cos f) = cos? §, a equagao torna-se

(sin®@ — cos® ) /f d¢+dg—)+M = —200529/f(¢)d¢+200t9g(9). (109)

Reorganizando os termos, podemos separar as variaveis de modo que todos os termos em ¢ fiquem

em um lado e os termos em 6§ no outro

/f(gb) dgb—l—%f):Qcot@g(@)—d‘Z—(;). (110)

Como o lado esquerdo depende apenas de ¢ e o direito apenas de 6, concluimos que ambos devem

ser iguais a uma constante k, ou seja

/f(gb) do + %f) s dfl—(;) ~2cotOg(f) = —k. (111)

A segunda equacao é uma EDO linear de primeira ordem, e podemos resolvé-la utilizando o
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método do fator integrante. Escrevendo-a na forma padrao ¢'(0) + p(0)g(0) = r(0), identificamos
p(f) = —2cot 0, r(0) = —k. (112)

O fator integrante ¢ dado por e/ @ o que fornece
P(O) = / —2cotfdf = —2In(sing), e PO = sin?6. (113)

Aplicando a férmula geral para equacoes desse tipo, obtemos

g(#) = sin® 9/ (_];> dt + C'sin? 0, (114)
sin“t
onde C' é a constante de integragao. Como f - dt = —cot i, o resultado final ¢
g(0) = sin? §(k cot 6 + C). (115)

Agora resolvemos a equagao para f(¢)

/f d¢+ﬁ=k. (116)
Derivando ambos os lados, obtemos
i) =0 (117
cuja solucao geral é:
f(¢) = Acos ¢ + Bsin ¢. (118)
A substituicao mostra que k£ = 0, levando a
g(0) = C'sin® 6. (119)
Reunindo os resultados:
Xy = Acos¢+ Bsin g,
X, = —sinfcosf(Asing — Bcosg) + Csin®6. (120)
Elevando os indices com a métrica, obtemos
X% = X,
X Siff ; (121)
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O vetor de Killing completo é, portanto

0 B
X = X'+ X0~
20 T 90

: 0 : 0
= (Acos¢+ Bsmgb)% + [C — cot O(Asin ¢ — B cos ¢)] 9
= —AL, + BL, + CL,, (122)

onde os operadores de momento angular sao definidos por

0 ., 0
L, = —cosqﬁ%%—cot@smgb%,
., 0 0
L, = smgb%—kcotecosgba—qb,
0
L, = —. 12
5 (123)

Esses trés vetores de Killing correspondem as simetrias de rotacao da S?. Dessa forma, de-
monstramos explicitamente que as simetrias da S? estdo intimamente ligadas & conservacgao do
momento angular, conceito essencial para a compreensao da estrutura esférica do espago-tempo

Schwarzschild discutido ao longo deste trabalho.
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