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RESUMO

Este trabalho analisa a geometria do espaço-tempo em torno de um buraco negro simétrico,

com base na Teoria da Relatividade Geral de Albert Einstein. A pesquisa aborda de forma

signi�cativa a transição da gravidade clássica de Newton, entendida como força, para uma visão

moderna que a descreve como consequência da curvatura do espaço-tempo causada pela presença

de massa e energia. São discutidos os fundamentos teóricos das teorias da Relatividade Restrita e

da Relatividade Geral, culminando na métrica de Schwarzschild como solução exata das equações

de campo de Einstein no vácuo. A partir dessa métrica, analisam-se conceitos fundamentais

como o horizonte de eventos e a singularidade, essenciais para a compreensão do comportamento

do espaço-tempo em regiões de gravidade intensa. Dessa forma, conclui-se que a métrica de

Schwarzschild representa uma das soluções mais elegantes e in�uentes para o entendimento da

estrutura geométrica dos buracos negros.

Palavra-chave: Relatividade Geral; Buracos Negros; Espaço-Tempo; Métrica de Schwarzschild.



ABSTRACT

This work analyzes the geometry of space-time around a symmetric black hole, based on Albert

Einstein's Theory of General Relativity. The research signi�cantly addresses the transition from

Newton's classical concept of gravity, understood as a force, to a modern view that describes it

as a consequence of the curvature of space-time caused by the presence of mass and energy. The

theoretical foundations of the Special and General Theories of Relativity are discussed, culminating

in the Schwarzschild metric as an exact solution to Einstein's �eld equations in vacuum. From this

metric, fundamental concepts such as the event horizon and the singularity are analyzed, which

are essential for understanding the behavior of space-time in regions of intense gravity. Thus,

it is concluded that the Schwarzschild metric represents one of the most elegant and in�uential

solutions for understanding the geometric structure of black holes.

Keywords: General Relativity; Black Holes; Space-Time; Schwarzschild Metric.
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1 Introdução

O espaço e o tempo sempre despertaram grande fascínio e curiosidade entre cientistas e �lósofos,

sendo objeto de estudo e de grande re�exão ao longo dos séculos. A necessidade pela compreensão

da natureza dessas entidades fundamentais da realidade trouxe o surgimento de novas concepções

que moldaram o desenvolvimento da física moderna. A relação entre espaço, tempo e gravidade

constitui um dos mais profundos temas da ciência, e dois momentos signi�cativos na história,

entre 1905 e 1915, foram responsáveis por revolucionar completamente o entendimento dessa

compreensão, com a formulação das teorias da Relatividade Restrita e da Relatividade Geral,

propostas por Albert Einstein.

Publicada em 1905, a Relatividade Restrita reformulou as noções clássicas de espaço e tempo,

introduzindo um novo paradigma para a ciência, baseada na constância da velocidade da luz

e na invariância das leis físicas em todos os referenciais inerciais. Essa teoria mostrou como o

espaço e o tempo não são entidades absolutas e independentes, mas aspectos diretos de uma única

estrutura chamada espaço-tempo. Já em 1915, Einstein ampliou novamente os conceitos sobre

a Relatividade, com a teoria da Relatividade Geral, apresentando uma nova interpretação para

Gravidade, não tratando mais como uma força que atua à distância, como em Newton, mas como

sendo consequência direta da curvatura do espaço-tempo causada pela presença de massa e energia.

Essa visão geométrica do universo permitiu agora compreender diversos fenômenos cósmicos

sob nova ótica, entre eles os buracos negros, já que são regiões do espaço-tempo em que a curvatura

se torna tão intensa que nada, nem mesmo a luz, pode escapar de sua forte in�uência gravitacional.

Esses objetos de gravidade rigorosa constituem uma das previsões mais signi�cativas presentes

na Relatividade Geral e representam, seguramente ainda, um dos maiores desa�os teóricos e

observacionais da física.

A escolha deste tema se justi�ca tanto pela sua relevância conceitual e teórica que a Relati-

vidade Geral apresenta dentro da Física moderna quanto pela necessidade de compreender como

os fenômenos de extrema ação gravitacional, como os buracos negros, podem ser explicados por

meio de estruturas geométricas e matemáticas. Além disso, estudar e compreender a geometria

do espaço-tempo em torno de um corpo massivo proporciona novas bases sólidas para o entendi-

mento cosmológico e dos limites da física clássica, mostrando diretamente como as mudanças na

passagem de tempo e a curvatura do espaço são afetadas pela presença de massa e energia. Já

do ponto de vista educacional, apresenta como esses conceitos, ao serem compreendidos, auxiliam

na formação mais crítica do estudante de Física, favorecendo tanto uma visão integrada entre

matemática e natureza quanto o raciocínio teórico.

Dessa maneira, o presente trabalho tem como objetivo realizar um estudo sobre a geometria

do espaço-tempo em torno de um buraco negro simétrico, analisando a métrica de Schwarzschild

e discutindo de maneira relevante as implicações físicas e geométricas derivadas dessa solução

das equações de Einstein. Ao longo do texto, serão abordados os fundamentos históricos e teóri-

cos que conduzem de forma concreta e linear ao desenvolvimento da Relatividade, bem como a

transição das concepções clássicas sobre espaço e tempo para o modelo relativístico que sustenta

a física moderna.
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Metodologicamente, o trabalho prioriza uma compreensão conceitual e linear da Relatividade

e de suas implicações geométricas, fundamentada em análises bibliográ�cas de obras clássicas

e contemporâneas da Física. O desenvolvimento do trabalho está diretamente estruturado em

capítulos que vão percorrer desde o que conhecemos sobre pensamento físico moderno, com as

contribuições de Galileu e Newton, até as contribuições signi�cativas para a física relativística de

Einstein e a detalhada análise da métrica de Schwarzschild. Com isso, busca-se esclarecer como

a geometria do espaço-tempo se comporta em redor de um buraco negro simétrico, já que são

fundamentais suas contribuições para a física teórica e entendimento sobre a estrutura do universo.

2 Galileu Galilei e o Início da Física Moderna

Amplamente reconhecido como um dos precursores da ciência experimental e da física moderna,

Galileu Galilei (1564-1642) não se limitou apenas a descobertas cientí�cas, mas também a uma

nova forma de fazer ciência. Galileu baseava-se na experimentação, observação e, de forma decisiva,

no uso da matemática para descrever os fenômenos observados na natureza. Diante disso, este

capítulo busca abordar uma análise sobre suas principais contribuições, sobre seus experimentos

referentes ao movimento e seus estudos sobre o princípio da invariância, em que tais conceitos são

fundamentais para entender a consolidação da física moderna.

2.1 As contribuições de Galileu para a compreensão do movimento e

da gravidade

Durante séculos, as concepções acerca do movimento e da gravidade foram pautadas pelo

que conhecemos de física aristotélica. O modelo de Aristóteles permaneceu concreto até o século

XVII, em que se acreditava que o movimento dos corpos era ligado exclusivamente à sua natureza

e massa, sugerindo que corpos mais pesados cairiam mais rapidamente que corpos mais leves [1].

Com isso, Galileu foi o primeiro a propor uma abordagem ligada à modelagem matemática dos

fenômenos e ao caráter experimental para prová-los. Galileu não apenas refutou esses conceitos

mais antigos, mas mudou a forma de analisar a linguagem desses fenômenos naturais, visto ir

contra as ideias mais qualitativas propostas pela �loso�a natural de Aristóteles e propor essas

concepções quantitativas na natureza.

Destacam-se dentre suas principais contribuições signi�cativas as primeiras noções sobre inér-

cia. Embora inteiramente formal, sendo desenvolvida mais tarde por Isaac Newton, Galileu já

mostrava que, na ausência de forças externas, como, por exemplo, o atrito, os corpos tendem

a permanecer em um movimento retilíneo uniforme ou em repouso. Tal suposição já apresen-

tava uma ruptura direta com o que Aristóteles acreditava, pois ele entendia que todo movimento

necessita, para ser mantido, uma força constante [2].

Além dessas referentes contribuições, são notáveis seus estudos sobre a queda dos corpos,

demonstrando como a aceleração de um corpo em queda vai ser constante, independentemente da

sua massa, desde que sejam desconsideradas as forças dissipativas, como, por exemplo, o (atrito
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do ar). Segundo Galileu, em ausência de resistência do ar, corpos de diferentes massas caem com

a mesma velocidade e atingem o solo simultaneamente.

Essa a�rmação propôs um caminho signi�cativo para os estudos de gravidade, visto que, sob

ação exclusiva dela, esses corpos experimentam a mesma aceleração. Posteriormente, também

objetivou novas contribuições no desenvolvimento matemático do movimento retilíneo uniforme-

mente acelerado. Mostrando que, a partir de algumas observações experimentais utilizando planos

inclinados, foi percebido que corpos com um movimento sob acelerações constantes percorriam dis-

tâncias sempre maiores, mas com intervalos de tempo sempre iguais. Levando Galileu à seguinte

equação para descrever esse tipo de movimento

S = S0 + V0t+
1

2
at2, (1)

nesta equação, (t) é o tempo decorrido; (S), a posição �nal do corpo no instante (t); (S0) é a

posição inicial do corpo. Já (V0) é a velocidade inicial no instante (t) igual a zero, e, não menos

importante, (a) é a aceleração constante à qual o corpo está submetido. Com essa expressão,

permitiu prever como um corpo, ao longo do tempo, vai se comportar com um movimento em

aceleração constante. Se consideramos a queda livre vertical desse corpo, a partir de uma posição

(S0 = 0) e do repouso (V0 = 0), e a aceleração da gravidade (g), essa equação do movimento

uniformemente acelerado vai simpli�car para a seguinte expressão

S =
1

2
gt2, (2)

essa equação vai expressar com clareza a distância percorrida pelo corpo em queda livre em função

do tempo. Con�rmando a relação descoberta por Galileu de que o deslocamento é proporcional

ao quadrado do tempo. Já que, se o tempo de queda for dobrado, a distância percorrida será

quadruplicada, mostrando mais uma vez que a grandeza na obra de Galileu está entrelaçada em

unir experimento com o raciocínio matemático.

Em síntese, Galileu não apenas é relevante por seus estudos referentes à gravidade e movimento,

mas também por trazer uma nova forma de fazer ciência, mudando a própria prática cientí�ca

[3]. Substituindo análises qualitativas feitas outrora por práticas mais quantitativas, trazendo a

experimentação e abordagem matemática juntas [4, 5].

2.2 O princípio da invariância de Galileu e sua importância para a física

Diante de suas contribuições signi�cativas para o estudo do movimento e queda dos corpos,

Galileu formulou um dos mais importantes e duradouros princípios estudados na física. Princípio

esse, chamado de princípio da invariância, sendo conhecido como "Relatividade Galileana", por se

tratar de estabelecer que as leis físicas são as mesmas em todos os sistemas de referenciais inerciais.

Ou seja, para corpos que se movem com velocidades constantes um em relação ao outro. Essa

ideia foi proposta devido a ser observado que nenhum experimento mecânico realizado dentro de

um sistema em movimento uniforme pode detectar esse movimento em relação a outro referencial
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inercial externo, sendo que não haja qualquer interação com o ambiente externo.

Galileu revolucionou ao tirar a noção entendida sobre os conceitos de repouso absoluto, introdu-

zindo o movimento relativo, que não tinha um referencial privilegiado para mostrar os fenômenos

físicos. Validando qualquer sistema inercial para analisar as leis de movimento. Para isso �car

mais claro, podemos usar um exemplo que ajude na compreensão. Por exemplo, imagine um trem

em movimento retilíneo e uniforme sobre trilhos precisamente nivelados: nele tem um observador

num determinado vagão bem fechado, sem contato ou referência externa, os fenômenos mecânicos

vistos por ele dentro do vagão como um objeto sendo lançado verticalmente ou deixar cair uma

maçã, ocorrem da mesma forma como se o trem tivesse parado.

Em termos matemáticos, o princípio é expressado pelas transformadas de Galileu [6]. Onde, são

relacionadas as coordenadas de espaço e as de tempo para um mesmo evento em dois referenciais

inerciais diferentes.

Nesse contexto, analisando a �gura abaixo:

Figura 1: Representação de dois referenciais inerciais em movimento relativo. O sistema S ′ move-
se com velocidade constante v em relação ao sistema S ao longo do eixo x, ilustrando o princípio
da invariância de Galileu.

Fonte: Autoria própria (2025).

Na �gura acima temos dois referenciais inerciais S e S', em que o referencial S ′ se move em

relação a S com uma velocidade constante v ao longo de um eixo que podemos denominar como

x. Dessa maneira, as transformadas serão dadas por

x′ = x− vt

y′ = y

z′ = z

t′ = t. (3)

Essas equações vão mostrar que, para ambos os referenciais, o tempo é o mesmo (absoluto).
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Enquanto, para as coordenadas espaciais, acontece um ajuste conforme a velocidade relativa,

re�etindo a visão clássica do espaço e do tempo até o início do século XX, com o surgimento da

Relatividade restrita proposta por Einstein.

O princípio da invariância proposto por Galileu propôs implicações signi�cativas: garantiu que

as leis do movimento não vão depender da velocidade constante do observador e assim permitindo

uma análise uni�cada conceitual dos fenômenos de descrição física entre referenciais diferentes.

Posteriormente, permitindo por meio dessa noção de simetria entre dois observadores, a formulação

das leis de Newton. Com isso, esse princípio representa umas das maiores inovações feitas por

Galileu, que proporcionou uma concepção inovadora, dinâmica e racional do movimento. Pois

tal princípio, mesmo que pareça trivial, retira o domínio do absoluto e traz um contexto mais

observacional, consolidando a nova forma de pensar sobre as leis físicas e proporcionando pilares

para a física moderna.

2.3 Experimentos sobre a queda dos corpos e o movimento uniforme-

mente acelerado

Galileu, sabendo das limitações técnicas presentes no seu tempo, teve que encontrar ferramen-

tas inovadoras com o que tinha de palpável ao seu redor para que pudesse desenvolver experimen-

talmente esses conceitos sobre a queda dos corpos e o movimento uniformemente acelerado. Com

a limitação tecnológica para medir a queda livre vertical, a qual ocorria muito rápido. Galileu teve

a brilhante ideia de abordar esses conceitos utilizando planos inclinados, visando diminuir a velo-

cidade do movimento e, com isso, possibilitar registrar com uma exatidão superior os intervalos

de tempo em que um corpo percorria algumas diferentes distâncias.

Para isso, Galileu teve que ser criativo e não poupou maneiras de medir o tempo. Ao utilizar

esferas sobre o plano inclinado suavemente bem polido, utilizou ritmos musicais, já que tinha

familiaridade com a música. Ele colocava pequenos ressaltos (como trastes) ao longo do plano

inclinado utilizado, assim, cada vez que a esfera passava por um ressalto, fazia um clique. Ajus-

tando a posição desses ressaltos, ele conseguia garantir que o intervalo de tempo entre os cliques

fosse sempre o mesmo. Também utilizou até mesmo �uxo de água de um recipiente para outro.

No qual, cuja massa coletada ao �nal de cada experimento, estimaria o tempo decorrido.

Essa capacidade criativa revela que Galileu não apenas era um gênio teórico, mas também tinha

grande capacidade de obter dados experimentais de maior con�ança usando recursos considerados

simples [5]. Ao registrar essas distâncias percorridas e agora conseguir medir os intervalos de

tempo, ele observou que essas distâncias cresciam de forma proporcional ao quadrado do tempo,

como vimos nos tópicos anteriores. Sendo possível, devido a sua repetição sistemática e precisa

da análise quantitativa dos resultados por ele feita. Sendo fundamental no seu desenvolvimento

matemático do movimento retilíneo uniformemente acelerado discutido antes.

Assim, torna-se mais notável que, a partir de agora, não apenas observava os fenômenos, mas

agora tem uma necessidade de compreender de maneira lógica e signi�cativamente quantitativa.

Agora a realidade observável serve como critério de verdade a ser analisada e não apenas a razão

pura proposta por um princípio absoluto.
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Em suma, os experimentos de Galileu, além do seu rigor teórico e experimental, proporcionaram

o simbolismo da passagem do que conhecemos de �loso�a natural para o que denominamos de

física moderna [3]. Mostrando que uma observação pautada na sistematização dos dados coletados

e uma modelagem matemática concreta podem ser trabalhadas lado a lado, revelando as leis que

regem os movimentos dos corpos. Assim, essa abordagem não apenas inspirou Isaac Newton, mas

modi�cou toda a física clássica que se dava continuidade.

3 Isaac Newton e a Consolidação da Mecânica Clássica

Sendo um dos maiores expoentes do que conhecemos sobre ciência moderna, Isaac Newton

(1643-1727) estabeleceu as bases da mecânica clássica com suas leis de movimento e expandiu os

estudos outrora feitos por galileu e outros precursores. Com seus trabalhos, Newton possibilitou de

forma clara entender agora os fenômenos da natureza e de maneira matemática os seus dinamismos.

Para mais, ele estabeleceu sua lei da gravitação universal, que corrobora no entendimento das

demais, visto entender a dinâmica da queda de um corpo próximo a terra até o movimento dos

planetas presentes no sistema Solar.

3.1 As leis do movimento de Newton e a Lei da Gravitação Universal

Newton, para ter uma compreensão concreta do movimento, propôs as três leis fundamentais

da mecânica, conhecidas como Leis de Newton:

A Primeira Lei, chamada de Lei da Inércia, a�rma que um corpo em movimento tende a

manter seu movimento em linha reta e com velocidade constante, e um corpo em repouso tende

a permanecer em repouso, a não ser que seja obrigado a mudar seu estado por forças externas.

Essa concepção, por si só, já destoava do que era entendido anteriormente, pois demonstra que o

movimento não necessita de uma força contínua para ser mantido [11].

A Segunda Lei, também chamada de Lei Fundamental da Dinâmica, estabelece de forma

quantitativa uma relação entre massa, aceleração e força, a qual pode ser representada pela seguinte

equação

F⃗ = m · a⃗. (4)

Nessa equação, F⃗ representa a força resultante que atua sobre um determinado corpo,m representa

sua massa, e a⃗ a aceleração produzida. Essa relação é fundamental para a análise do movimento

dos corpos em inúmeras situações.

A Terceira Lei, evidenciada principalmente na interação direta entre corpos, permite com-

preender como ocorrem fenômenos como colisões e a propulsão de foguetes. Também chamada de

Lei da Ação e Reação, ela a�rma que para toda ação existe uma reação de mesma intensidade,

mas em sentido oposto.

Agora, visto o que discutimos até aqui, podemos analisar alguns pontos importantes sobre

as três leis. Como as Leis de Newton são formuladas para referenciais inerciais [12], a Primeira
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Lei desempenha um papel fundamental: já que de�ne o que é um referencial inercial, isto é, um

sistema no qual um corpo permanece em repouso ou em movimento retilíneo uniforme quando

a força resultante é nula. Assim, embora o comportamento descrito pela Primeira Lei possa

ser obtido da Segunda Lei ao considerar o caso particular F⃗R = 0, a Primeira Lei não se reduz à

Segunda. Ela possui caráter conceitual próprio, pois estabelece o critério necessário para identi�car

os referenciais nos quais a Segunda Lei é válida. Já a Segunda Lei, sendo o princípio fundamental da

dinâmica, descreve quantitativamente como a força resultante produz uma variação na quantidade

de movimento (ou momento linear) de um corpo

F⃗R =
dp⃗

dt
=

d

dt
(mv⃗) = m

dv⃗

dt
= ma⃗. (5)

Dessa forma, �ca evidente a coerência interna do sistema newtoniano e a estrutura lógica pre-

sente na mecânica clássica. Conhecendo a força resultante, a Segunda Lei permite determinar a

aceleração, e consequentemente as velocidades e posições, por meio de integrações sucessivas das

seguintes equações

a⃗(t) =
dv⃗

dt
=

d

dt

(
d⃗⃗r

dt

)
=

d2r⃗

dt2
. (6)

Essas expressões vão mostrar a importância do tempo na descrição do movimento, pois simpli�ca

observar como o movimento evolui sabendo suas condições iniciais e portanto matematicamente

aborda como a primeira lei não é isolada das demais, e sim está ligada dentro da abrangência do

formalismo Clássico.

Seguindo essas análises, agora abordando a terceira lei, podemos observar como ela está re-

lacionada ao princípio de conservação linear de um sistema isolado (sistemas ao qual não atuam

forças externas). Para isso, vamos considerar dois corpos um sobre o outro, no qual sabemos que

através da terceira lei de Newton as ações mútuas entre eles são sempre iguais, mas com sentido

contrário. Assim, considerando as duas colidindo, o objeto 1 exerce uma força sobre a partícula

2, representada por um vetor F⃗12, e, de forma correspondente, a partícula 2 vai exercer uma força

sobre o objeto 1, representada por um F⃗21. Sendo importante ser considerado, que tratamos aqui

de uma força forte, pois o segmento de reta que uni as partículas é paralelo ao par ação e reação.

Com isso, admitindo que os objetos um e dois constituem um determinado sistema isolado

vamos ter apenas as forças que foram resultado da colisão entre as duas. Para continuar a análise,

devemos voltar para equação 5, na qual observamos que a força resultante delas está relacionado

a taxa de variação do momento linear em relação ao tempo.

Por de�nição, o momento linear total p⃗ é dado pela soma dos momentos lineares das partículas,

isto é,

p⃗ = p⃗1 + p⃗2. (7)
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Agora, vamos derivar a equação (7) no tempo

dp⃗

dt
=

dp⃗1
dt

+
dp⃗2
dt

, (8)

e aplicar a segunda lei de Newton

dp⃗

dt
= F⃗12 + F⃗21, (9)

sabendo que a Terceira Lei de Newton é

F⃗12 = −F⃗21, (10)

podemos substituir na equação (9) e observar que teremos a soma das forças internas nula, como

esperado

dp⃗

dt
= 0, (11)

dessa forma, concluímos que

p⃗ = constante. (12)

Ou seja, o momento linear é constante, pois não varia com o tempo t (momento linear é conser-

vado). Para complementar essa análise mecânica, Isaac Newton propôs o que hoje conhecemos

como Lei da Gravitação Universal, a qual descreve de maneira precisa a atração gravitacional entre

dois corpos com massa. Essa lei não apenas explica a queda dos corpos próximos à Terra, mas

também o movimento dos corpos celestes, uni�cando assim o comportamento terrestre e celeste

sob a mesma ótica.

3.2 A Lei da Gravitação Universal

Buscando compreender não apenas os fenômenos que ocorrem na Terra, mas também preocupando-

se com os movimentos dos corpos celestes, Isaac Newton propôs sua Lei da Gravitação Universal.

Essa formulação está presente em sua obra Philosophiae Naturalis Principia Mathematica [7] e

representa uma das grandes uni�cações da Física Clássica. Pois matematicamente vai a�rmar que

todos os corpos com massa exercem uma determinada força de atração entre si, não importando a

distância entre os corpos analisados. Nessa obra, Newton também mostra como as leis de Kepler,

anteriormente baseadas apenas em observações empíricas, são consequências diretas desta lei.

Segundo Isaac Newton, a força gravitacional entre dois corpos pontuais, com massa m1 e

m2, é diretamente proporcional ao produto das massas dos corpos analisados, e inversamente

proporcional ao quadrado da distância entre eles. Assim, a força tem a direção da reta que

uni�ca as massas analisadas. Se considerarmos que r⃗12 é o vetor com origem no corpo m1 e sua

extremidade no corpo m2, e que ê12 é o vetor unitário com a mesma direção e sentido de r⃗12, a

17



força gravitacional exercida por m1 sobre m2 é dada por

F⃗12 = −Gm1m2

|r⃗12|2
ê12, (13)

nessa equação, G é a constante de gravitação universal, com valor aproximado de G ≈ 6,674 ×
10−11 N ·m2/kg2.

A força gravitacional também satisfaz a Terceira Lei de Newton, ou lei da ação e reação. Já

que a força que o corpo m2 exerce sobre o corpo m1 é igual em módulo, mas oposta em direção à

força F⃗12, formando o par ação-reação, como podemos ver na equação abaixo.

F⃗21 = −Gm2m1

|r⃗21|2
ê21, (14)

onde vemos que essas forças são aplicadas em corpos distintos, mas possuem mesma intensidade

e sentido contrário. Satisfazendo novamente a seguinte equação que representa essa ilustração

F⃗21 = −F⃗12. (15)

Onde podemos observar exatamente a terceira lei de Newton, a qual a�rma que para toda ação,

existe uma reação de mesma intensidade e direção, mas sentido oposto.

Dessa maneira, podemos discorrer sobre algumas aplicações e implicações referentes a essa lei.

Já que se trata de um campo que, além de mostrar a relação de atração existente entre corpos com

massa, ela mostra uma grande precisão em relação a inúmeros fenômenos naturais, já que explica

as interações que estão presentes desde a queda de um corpo qualquer na Terra ao movimento dos

planetas ao redor do Sol. Assim, essa uni�cação terrestre e celeste foi fundamental tanto física

quanto matematicamente para a completude dessa lei.

Dessa forma, podemos, por exemplo, entender a força com que a Terra atrai um objeto de

massa m perto da sua superfície. Para isso vamos imaginar o seguinte: a massa da Terra é Mt

e seu raio médio seja Rt, e usando a equação 4 que vai corresponder diretamente ao peso do

objeto, que mostra sua aceleração em direção ao solo. Já que o peso é o produto da massa com a

gravidade, temos a seguinte equação para a aceleração da gravidade:

g = G · MT

R2
T

. (16)

Isso nos mostra que g é apenas um caso particular da lei da Gravitação Universal, e não utilizado

apenas como uma constante usada para alguns fenômenos próximos à Terra. Essa propriedade

ajuda a entender como os fenômenos planetários funcionam por meio da gravidade. Consequen-

temente, o cálculo de órbitas de satélites, explicação do movimento dos planetas, como ocorrem

os eclipses e até mesmo como o movimento das marés funciona são apenas algumas das diferentes

contribuições que essa lei ajuda a explicar para o entendimento moderno até o desenvolvimento

da Relatividade Geral posteriormente.
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3.3 A visão de espaço e tempo absolutos na física newtoniana

Para fundamentação de suas leis, Newton precisou entender não apenas o movimento dos cor-

pos, mas antologicamente analisou a estrutura do universo para fomentar sua concepção sobre

tempo e espaço absolutos. Segundo Newton, esses conceitos vivem separados de qualquer obser-

vador, já que em sua análise propôs ser sempre o mesmo e imóvel o espaço, e o tempo, por sua

vez, absoluto ao �uir de forma uniforme, não tendo relação com nada externo. Assim, para todos

os observadores em qualquer lugar do universo, isso seria válido.

Como vimos anteriormente nos tópicos sobre Galileu, a mecânica clássica aborda matematica-

mente o tempo imutável, ou seja, independente do referencial, ele será o mesmo. E como Galileu

mostrava, o espaço pode ser analisado pelo sistema �xo de coordenadas, que pode ser imaginado

como um determinado cenário tridimensional, como uma grelha, por exemplo, de forma invisível,

para o qual os eventos estão acontecendo. Nessa grelha temos as coordenadas (x, y, z) estando

em repouso absoluto e não se deformando e nem se movendo. Podendo, para Newton, descrever

a posição de qualquer corpo em relação a esse espaço �xo no universo, não importando o instante

analisado. Nesse contexto podemos ver como um palco e o cantor, onde o espaço é o palco e o

corpo é o ator. Desse modo, os corpos mudam sua posição ao longo do tempo, pois, se muda

a posição, tem movimento, mas, como o espaço é imutável, é possível saber exatamente onde o

corpo esteve ou está.

Para Newton, as noções sobre aceleração só seriam signi�cativas onde o espaço e tempo fossem

imutáveis. Pois, sabendo que

a⃗ =
dv⃗

dt
. (17)

É necessário, de forma simples, para encontrar a aceleração, saber a velocidade em instantes

distintos, um referencial como um relógio, ao qual meça o tempo de forma con�ável, e medir as

mudanças de velocidade. Ou seja, depende ligadamente do espaço e tempo; se o tempo �uísse

de formas diferentes para cada observador nesse contexto, a taxa de variação de velocidade seria

diferente de uma constante universal, e se o espaço deformasse, a trajetória dos corpos seria

in�uenciada pelo espaço e não pela força, mudando o sentido objetivo de mudança de posição e

obrigatoriamente de velocidade e da aceleração.

Apesar do signi�cativo valor das noções acerca de espaço e tempo absolutos, foram cada vez

mais ganhando questionamentos com as melhorias em medições astronômicas e consequentemente

com a evolução presente na eletrodinâmica, em que posteriormente a Teoria da Relatividade traria

uma nova formulação que mudaria o entendimento visto antes desses conceitos.

3.4 Limitações da mecânica clássica frente a fenômenos eletromagnéti-

cos e velocidades elevadas

Diante das contribuições advindas desses conceitos apresentados por Newton, faz-se necessário

também analisar suas limitações quando estamos frente aos fenômenos eletromagnéticos e tam-
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bém estudando corpos em altas velocidades. Essas limitações se tornaram mais aparentes com a

evolução na teoria e nos experimentos acerca da óptica e do eletromagnetismo por volta do �nal

do século XIX [25]. Onde, se tornava evidente com a teoria avançando e a experimentação que as

leis da mecânica clássica falhavam em certos fenômenos.

Dentre diversas limitações quando estamos em altas velocidades e analisando fenômenos ele-

tromagnéticos, podemos relembrar a segunda lei de Newton, fundamentada na suposição de que

a massa permanece constante e de que o espaço e o tempo são absolutos, conforme visto anteri-

ormente. No entanto, com o desenvolvimento das equações de Maxwell, �cou nítido que a luz no

vácuo possuía velocidade constante, independente do movimento da fonte ou do observador. Essa

previsão não é compatível com as transformações de Galileu, que regem a mecânica clássica e im-

plicam uma adição simples de velocidades. Além disso, experimentos como o de Michelson�Morley

mostraram que a velocidade da luz realmente não varia com o referencial, evidenciando a neces-

sidade de revisar os conceitos clássicos de espaço e tempo e motivando o surgimento da Teoria da

Relatividade Especial.

Ou seja, a�rmação de constância da velocidade da luz não satisfaz as transformações de Galileu

e a estrutura adotada na mecânica newtoniana, na qual abordamos anteriormente. Pois, segundo

as transformações de Galileu, que são base da mecânica newtoniana, a velocidade de um objeto

dependia do referencial, em que, se tivéssemos um objeto se movendo a 50km/h e você lançasse

um segundo objeto a 10km/h na mesma direção, um determinado observador veria a velocidade

do segundo objeto a 60km/h, que é o que vimos sobre adição de velocidades, a qual valeria para

tudo, inclusive para a luz. Para Maxwell, se você estiver indo ao encontro na direção de uma fonte

de luz, você ainda mediria a mesma velocidade da luz que o observador em repouso, não batendo

com a adição de velocidades antes proposta.

Já com os experimentos de Michelson-Morley, isso se torna mais aparente, aumentando a neces-

sidade dessa nova interpretação acerca do espaço e do tempo. Realizado em 1887, o experimento

teve como objetivo analisar a detecção na variação da velocidade da luz devido ao movimento

da Terra, pelo suposto "éter", mas o resultado não mostrava nenhuma alteração ou variação,

indicando que a velocidade da luz realmente era a mesma para todos os referenciais [20].

Assim como, ao estudarmos o comportamento de partículas próximas a altas velocidades, seus

comportamentos vão distanciando dos previstos pela mecânica clássica. Já que, nesses exemplos

de situações, não basta apenas considerar espaço e tempo como �xo, mas também considerar

como massa inercial aumenta próxima a velocidade alta ou própria constância da velocidade da

luz que �zeram ser plausível buscar uma nova análise sobre a estrutura do universo, pois para

essas situações a mecânica newtoniana seria incompatível.

Desse modo, essas ideias proporcionaram novamente buscar entender o funcionamento do es-

paço e do próprio tempo, fazendo com que fosse necessário essa nova análise sobre grandezas que

analisam desde o tempo decorrido, quanto a simultaneidade dos eventos, que aprofundados vere-

mos que dependem do referencial. Devido a isso, entender como ocorre a dilatação do tempo e a

contração do espaço é necessário rigorosamente, e é o que vamos discutir nos próximos capítulos.

20



4 Albert Einstein e a Teoria da Relatividade Restrita

Publicada em 1905, por Albert Einstein, a teoria da relatividade especial, também conhecida

como relatividade restrita, nos apresenta uma revolução na nossa compreensão do espaço e, conse-

quentemente, do tempo e da natureza das leis físicas. Onde apresentou novos conceitos e princípios

que apontaram revisões diante das noções tradicionais de espaço e tempo absolutos apresentadas

por estudos anteriores, em especial as contribuições de Isaac Newton. Quando falamos de rela-

tividade restrita, devemos �car atentos a dois postulados essenciais, o Princípio da relatividade

e a constância da velocidade da luz. Observando esses dois princípios, podemos observar suas

importantes consequências.

4.1 Os postulados fundamentais da relatividade restrita

Para compreender a estrutura da Relatividade Restrita é necessário destacarmos dois Postu-

lados fundamentais para a base da teoria. O primeiro postulado vai estabelecer que as leis físicas

são invariantes em todos os referenciais abordados, enquanto o segundo abordará a a�rmação de

que a velocidade da luz no vácuo é constante e independente do movimento tanto da fonte quanto

do observador. Nesse contexto, esses princípios vão diretamente romper com a visão clássica ado-

tada anteriormente acerca do espaço e do tempo como absolutos e propõe um novo arcabouço

conceitual, que vamos explorar nós tópicos seguintes.

4.1.1 Postulado I : Princípio da relatividade

O princípio da Relatividade foi formulado inicialmente só século XVII, por Galileu Galilei e

consequentemente re�nada por Einstein ao desenvolver a teoria que estamos observando. Esse

princípio consiste em uma parâmetro fundamental da física, que a�rma que as leis da física são

as mesmas independente do referencial, ou seja ela são as mesmas para todos os referencial iner-

cial (referencial que está em repouso ou não está acelerando, mas se movendo a uma velocidade

constante, conhecido como movimento retilíneo uniforme).

Ou seja, os resultados de um experimento físico e as previsões das teorias físicas devem ser inde-

pendentes do movimento do observador. Assim, não haveria um referencial inercial de preferência,

podendo qualquer um ser válido para mostrar os fenômenos físicos. Desse modo, esse princípio vai

de afastamento à física clássica, pois a�rmava que havia um referencial absoluto contra o qual os

movimentos poderiam ser medidos. Já em contraponto, o princípio da Relatividade mostra que

não há um referencial absoluto, isso aplica que as leis da física não apresentam variação. Ou seja,

as leis da Física apresentam a mesma forma em qualquer sistema inercial, independentemente de

sua orientação ou de sua posição no espaço.

Desse modo, podemos entender que todo movimento é relativo e seria de�nido em relação

ao movimento de outros objetos. O conceito de Relatividade também nos mostra a análise de

dilatação do tempo e contração, que de acordo com ela as convicções de espaço defendidas anteri-

ormente por outros cientistas, relacionadas a três dimensões, teriam que ser substituída por uma

análise visando a uni�cação do espaço e o tempo. Ou seja, em um continuum quadridimensional
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chamado espaço-tempo, com três dimensões de espaço e uma de tempo que vamos observar na

teoria mostrada.

4.1.2 Postulado II : Constância da velocidade da luz

Após analisar o primeiro postulado acerca da invariância das leis físicas, onde observamos que

os princípios fundamentais e as equações da física, devem ter a mesma forma não importando

o movimento do observador. Agora, vamos observar o postulado que se trata da constância

da luz no vácuo. Esse postulado proposto por Albert Einstein, traz uma ruptura ao modelo

proposto anteriormente por Galileu Galilei, onde dizia que a velocidade da luz, variava com base

no movimento do observador.

Assim, diferente do que era aceito anteriormente, a velocidade da luz permanece constante

independente do movimento relativo de quem observa. De acordo com o postulado, se você medir

a velocidade da luz no vácuo, atribuída pelo “C”, ela será como já vimos aproximadamente,

299.792.458 metros por segundo, independente do observador está em repouso ou se movendo em

alta velocidade. Esse postulado, tem implicações relevantes no que conhecemos sobre dilatação

do tempo, visto sua inferência em relação ao tempo, espaço e consequentemente energia que foi

amplamente estudado por Albert Einstein, ao longo de sua teoria.

Em conclusão, tanto o princípio da Relatividade quanto a constância da luz, trouxeram uma

nova visão e um impacto cósmico acerca de nosso entendimento do universo. Onde, sendo base da

teoria proposta por Einstein, proporcionou uma compreensão do espaço e tempo não antes vista.

4.2 Consequências dos postulados

A Partir da análise feita pelo que vimos dos Postulados, é possível e fundamental derivar

algumas consequências diretas deles. Dentre muitas e signi�cativas implicações, podemos compre-

ender a dilatação do tempo, a contração do espaço e a equivalência entre massa e energia, que são

além de signi�cados teóricos, é experimentalmente aceito em aplicações na prática atualmente.

Esses conceitos, são de grande importância no estudo sobre Relatividade, pois proporciona uma

contemplação signi�cativa dos postulados e das análises feitas por Einstein. Assim, nos seguintes

tópicos, iremos falar sobre esses principais fenômenos e aprofundar em suas implicações.

4.2.1 Dilatação do Tempo

A dilatação do tempo, conceito esse atribuído aos estudos sobre Relatividade Especial, é um

aspecto fundamental no estudo sobre Relatividade. Visto, suas aplicações ao entendimento de

espaço, tempo e do comportamento de objetos em condições rigorosas.

Na Relatividade Especial, ela ocorre diante ao movimento relativo, podendo ser analisada

colocando dois observadores se movendo um em relação ao outro, um estando em alta velocidade

e o outro em repouso, o que estaria em grande velocidade perceberia o tempo está se movendo

mais lentamente em relação o que estaria em repouso. Assim, quanto mais próximo à velocidade

da luz um dos observadores estiver, maior será essa variação do tempo entre os dois.
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Esse exemplo pode ser analisado, visto as contribuições de Hafele-Keating, que observou esse

efeito ao analisar medições feitas por relógios atômicos em determinados aviões viajando em

velocidades desiguais [17]. Podendo também ser visualizado esse efeito de dilatação do tempo,

calculando a observação de dois observadores, um dentro de um carro, observando um laser sendo

disparado em um espelho no teto do carro e outro na calçada vendo o carro passar.

Dessa forma, segundo os postulados estudados o que estaria dentro do carro veria o laser na

vertical, já ao mesmo tempo o que estaria pelo lado de fora, veria uma diagonal formando um

triângulo, como podemos ver na �gura abaixo: Nela, podemos observar um triângulo retângulo

Figura 2: Triângulo relacionado ao esquema de referencial
Fonte: Autoria própria (2025).

que mostra como seria a análise de Albert Einstein sobre essa variação. Assim, podemos tomar

como c∆t, sendo o deslocamento para o observador fora do carro. Já o c∆t0 é o deslocamento da

luz para o observador dentro do carro e o v∆t seria o deslocamento do carro.

Assim, podemos encontrar essa variação partindo da equação de velocidade média

v =
∆S

∆t
, (18)

isolando a variação de espaço ∆S, temos

∆S = v∆t, (19)

podemos utilizar o teorema de Pitágoras para o triângulo proposto

(c∆t)2 = (v∆t)2 + (c∆t0)
2

c2∆t2 = v2∆t2 + c2∆t20

c2∆t20 = c2∆t2 − v2∆t2. (20)

Seguindo, colocaremos em evidência o ∆t2 para depois isolar e fazer a raiz quadrada que vai
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possibilitar observar a variação do tempo que queremos analisar

c2∆t20 = ∆t2(c2 − v2)

∆t2 =
c2∆t20

(c2 − v2)

=
c2∆t20

c2
(
1− v2

c2

)
=

∆t20
1− v2

c2

=
∆t0√
1− v2

c2

. (21)

Com essa equação, podemos observar a variação do tempo entre dois observadores, um próximo

a velocidade da luz em relação ou outro. Tornando necessário, apenas substituir e visualizar a

variação do tempo entre oa dois observadores. Dessa maneira, esse fenômeno abre caminho para

entendermos que o tempo não é absoluto, ideia que será fundamental ao tratar da gravidade como

curvatura do espaço-tempo.

4.2.2 Contração do Comprimento

Desse modo, também podemos observar a contração do comprimento. Pois, de modo análogo

ao da dilatação do tempo, podemos usar um exemplo para ilustrar imaginando assim o que ocorre

com um corpo próximo a velocidade da luz. Para isso, adotamos como dois referenciais um próximo

a velocidade da luz (∆L′) e outro na terra, chamado por (∆L).

Próximo a c, temos

L′ → ∆L′ = X ′
2 −X ′

1, (22)

na terra

L → ∆L = X2 −X1, (23)

usando a transformação de Lorentz, apêndice 8.1, e tomando v como velocidade do referencial

inercial que se move, e t como o tempo, observamos

X ′
2 = γ(X2 − vt) (24)

X ′
1 = γ(X1 − vt). (25)

24



Subtraindo a equação 24 pela 25

X ′
2 −X ′

1 = γX2 − γvt− (γX1 − γvt)

X ′
2 −X ′

1 = ∆L′

∆L′ = γX2 − γX1. (26)

Colocando o γ em evidência

∆L′ = γ(X2 −X1), (27)

e X2 −X1 = ∆L, encontramos

∆L′ = γ∆L, (28)

tomando que o fator de Lorentz é γ = 1√
1− v2

c2

, obtemos

∆L =
∆L′

γ
, (29)

ou

∆L = ∆L′ ·
√

1− v2

c2
. (30)

Em síntese, observar a contração do comprimento até aqui, proporciona mostrar que o espaço

também é relativo, tal como vimos com o tempo anteriormente. Contrariando dessa forma, a

visão clássica newtoniana de grandezas absolutas e evidenciando a necessidade de tratar o espaço

e tempo como de forma uni�cada no chamado contínuo espaço-tempo.

Esses efeitos, previstos teoricamente e con�rmados por partículas se deslocando em altas velo-

cidades de forma experimental, trás agora uma nova perspectiva para compreender não apenas a

equivalência entre massa e energia, mas posteriormente, a ideia da gravidade como a manifestação

direta da geometria do espaço-tempo na Relatividade Geral.

4.2.3 Equivalência Massa-Energia

Diante o que já vimos, trataremos de um dos principais resultados previstos pela Relatividade

restrita, o conhecimento sobre equivalência sobre massa e energia. Tal princípio mostra como as

relações presentes entre massa e energia funcionam, a�rmando que massa pode ser diretamente

convertida em energia e vice-versa. Essa a�rmação se dá devido a conhecida equação de Einstein,

proposta logo abaixo.

E = mc2. (31)
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Essa simples equação correlaciona de maneira direta como massa e energia estão diretamente

ligadas. Nela, podemos observar que (E) representa a energia total de um corpo em repouso, já

(m) representa a massa desse corpo e (c) como já vimos é a representação da velocidade da luz no

vácuo. Assim, diretamente a expressão mostra que mesmo mínima a massa vai apresentar uma

quantidade relevante de energia.

Quando analisamos essa condição, observamos como a expressão mostra que conforme um corpo

em repouso recebe alguma quantidade de energia, seja ela, térmica, potencial interna, cinética entre

outras, vai contribuir no ganho de massa total do sistema. Pois, agora massa se comporta como

medida de energia interna desse corpo.

Por exemplo, se consideramos uma determinada mola e que está sendo comprimida, logo

ganhando mais energia potencial, nela veremos segundo a Relatividade que sua massa aumenta.

Da mesma forma, se tiver uma determinada vasilha com chá e adiciono mais calor a ela também

dará mais massa a ela. Ou seja, aqui o conceito está relacionado diretamente ao efeito que ocorre

internamente e não só de forma super�cial, pois no caso da mola esse energia potencial está dentro

da mola, tendo mais energia e já na xícara, dentro dela as moléculas vão se agitar, rotacionar e

vibrar mais, ganhando mais energia.

Essa ideia rompe com o conhecimento previsto anteriormente na Física clássica, pois segundo

Newton, essas entidades são separadas. De forma comparativa, podemos lembrar da expressão de

energia cinética de um corpo com massa m e uma velocidade v

Ec =
1

2
mv2, (32)

se considerarmos essa partícula com uma velocidade próxima a da luz, é necessário o fator de

Lorentz, trazendo a forma da energia total relativística

E = mc2 + (γ − 1)mc2, (33)

aqui podemos separar em duas partes essa expressão, a que já vimos na equação 31, que é a energia

de repouso e na energia cinética relativística abaixo

Ec = (γ − 1)mc2, (34)

que juntando as expressões, temos a seguinte equação para energia total na forma reduzida

E = γmc2. (35)

Dessa maneira, a equivalência massa-energia evidência que não são distintas entidades, mas ex-

pressões diferentes de uma mesma realidade física. Além de fundamentar os estudos ligados a

astrofísica, como fusão nuclear nas estrelas e a liberação de energia em supernovas, vai fornecer

diretamente uma base tecnológica como as usadas em reatores nucleares, e mais Importante ainda,

ela vai proporcionar ampliar o que conhecemos sobre o universo.

Pois, mostra que pequenas quantidades de massa poder se converter em grandes quantidades
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de energia como vimos, proporcionando essa transição entre o conhecimento clássico e moderno.

Com isso, esse princípio se conecta diretamente com a Relatividade Geral, pois além de massa e

energia serem equivalentes, vão desempenhar papel central na curvatura do espaço-tempo.

4.3 Superação das limitações da mecânica clássica e implicações para

a física moderna

A Relatividade restrita proporcionou grandes contribuições para a Física contemporânea, per-

mitindo entender como alguns fenômenos antes vistos pela física clássica como sem solução, agora

podendo serem compreendidos, assim como, suas análise mais didáticas são de grande importân-

cia para a construção gradual do entendimento relativístico geral tem sido discutida por diversos

autores [10]. Além de que, a compreensão de fenômenos como dilatação do tempo, contração do

espaço e a constância da luz, abordam a ideia de dependerem do referencial abordado, sendo enti-

dades relativas agora. Junto a isso, vimos como massa e energia são equivalentes, que propiciaram

a entender como se comporta a matéria e as novas bases para o que conhecemos sobre energia,

já que mostra pequenas quantidades de massa pode ser convertida em uma grande quantidade de

energia.

Essa nova interpretação sobre a matéria e energia, Possibilitou novas pesquisas e construções

futuras nas áreas da física nuclear, astrofísica e Relatividade Geral, já que, fundamenta o estudo do

funcionamento da geração de energia em usinas nucleares quanto o comportamento do processo

de alimentação de estrelas. Nesse contexto, o campo da experimentação proporcionou mostrar

na prática como os fenômenos relativísticos ocorriam, como o de contração do comprimento e

dilatação do tempo, ajudando consequentemente na utilização dessas equações em equipamentos

voltados para algumas áreas, dentre elas, a espacial, com o uso comum em satélites e alguns

sistemas de navegação, que de maneira precisa, necessitam de uma correção relativística, um

exemplo é o GPS, sendo utilizada essa correção relativística para que não ocorresse erros no

cálculo de posição, mostrando que além de sua importância teórica, esse estudo é utilizado na

prática.

Quando tratamos de invariância da velocidade da luz, observamos uma contribuição chave

para a ruptura com a Física clássica, abordando as limitações experimentais e matemáticas das

teorias propostas anteriormente por Galileu e Newton. Desse maneira, não apresentando apenas

correções nas teorias anteriores, mas mudando um paradigma para alguma novas áreas da física,

como a (física de partículas, a cosmologia e as tecnologias de alta precisão), como vimos. No en-

tanto, mesmo essa teoria explicando com sucesso os fenômenos presentes nos referenciais inerciais

e o comportamento da luz, ela não abrange os efeitos gravitacionais que estamos procurando en-

tender. Dessa maneira, compreender situações em que a gravidade apresenta o papel fundamental

é devidamente necessário, assim, fez-se importante uma nova formulação ainda mais abrangente,

culminando na teoria da Relatividade Geral, que agora vai introduzir a curvatura do espaço-tempo

como a explicação para a Gravidade.
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5 Teoria da Relatividade Geral

A Teoria da Relatividade Geral, formulada por Albert Einstein em 1915, representa uma

nova forma de compreender o espaço, o tempo e a gravidade. Diferentemente das concepções

newtonianas, em que a gravidade era tratada como uma força que atrai os corpos, relacionando

diretamente o produto das massas e inversamente ao quadrado da distância, Einstein mostrou

que o fenômeno gravitacional é, na verdade, uma manifestação geométrica. Segundo essa teoria,

a presença de massa e energia deforma o espaço-tempo, e essa curvatura é o que vai orientar o

movimento dos corpos. Assim, a matéria diz ao espaço-tempo como se curvar, e o espaço-tempo diz

à matéria como se mover, ideia que resume de forma elegante o conteúdo da teoria da Relatividade

Geral [24]. Dessa forma, a Relatividade Geral uni�ca a geometria e a física, revelando uma visão

mais profunda da estrutura do universo.

Para entender essa teoria, podemos partir da ideia central desse modelo. Onde mostra concre-

tamente que energia e massa distorcem o espaço-tempo e consequentemente produzem uma força

gravitacional. Com isso, entendemos que o espaço-tempo se curva, fazendo com que inevitavel-

mente in�uencie na vizinhança.

Essas relações entre massa, energia e curvatura do espaço-tempo estão signi�cativamente re-

lacionadas nas equações de campo de Einstein, que serão trabalhadas posteriormente, nas quais

conectam o tensor métrico gµν e suas derivadas (por meio do tensor de curvatura de Ricci Rµν) à

distribuição de energia e momento descrita pelo tensor Tµν .

Resolver essas equações em diferentes contextos nos permite descrever desde o espaço-tempo

ao redor de um buraco negro até a expansão em larga escala do universo. É por meio delas que

descobrimos essas interações de distribuição de matéria, energia e os efeitos gravitacionais envol-

vidos [8]. Assim, para entender esses fenômenos, são necessários alguns conceitos importantes,

como o conhecimento do Tensor de Einstein, que é feito pela combinação de tensor métrico e

suas derivadas. Ao resolver essas equações, podemos entender signi�cativamente as interações da

curvatura do espaço-tempo em torno de buracos negros estacionários ou até mesmo a expansão

do universo.

De forma análoga, podemos também observar essa distorção do espaço-tempo de uma maneira

mais didática, utilizando uma espécie de cama elástica bidimensional representando o espaço.

Que, ao ser colocada uma esfera de massa signi�cativa sobre ela, a própria irá distorcer a cama

elástica que outrora estava reta. Assim, ao colocar outros objetos também de massa signi�cativa,

mas reduzida em relação ao anterior, o mesmo causaria também uma distorção, mas relativamente

menor em relação ao anterior, fazendo com que ele �casse de certa forma preso geometricamente

ao de maior massa [9]. Esse exemplo proporciona, na prática e de forma didática, entender como

ocorre essa distorção no espaço-tempo, podendo assim relacionar de maneira simples o entendi-

mento acerca das relações presentes nas órbitas dos planetas em torno do Sol até o comportamento

da luz perto de um buraco negro.

Após as informações vistas acima, podemos analisar o espaço-tempo rigorosamente mais sim-

ples. Pois, ao entendermos que se desprendendo das análises clássicas de outrora, que abordavam

o espaço separadamente do tempo, e agora combinando essas grandezas fundamentais da física
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mostrada por Albert Einstein, às três dimensões de espaço (largura, comprimento e altura) com

uma dimensão adicional de tempo. Vai ocorrer uma estrutura conhecida como estrutura qua-

dridimensional, que facilita a observação da interferência sofrida por objetos próximos a campos

gravitacionais e próximos da velocidade da luz, diretamente interferindo no �uxo temporal e es-

pacial ali presentes.

Dessa maneira, a Relatividade Geral aborda que não há tempo absoluto nem espaço �xo,

mas sim uma geometria dinâmica que se molda à presença de massa e energia. Essa perspectiva

é fundamental para entendermos a estrutura dos buracos negros, que representam as soluções

signi�cativamente extremas das equações de Einstein.

5.1 As equações de campo de Einstein e a nova compreensão da gravi-

dade

Com a construção da teoria da Relatividade Geral, Albert Einstein estabeleceu uma nova

relação direta entre geometria do espaço-tempo e a distribuição de massa e energia existente nele.

Diferentemente da visão clássica proposta por Newton, na qual gravidade era interpretada como

uma força que atua à distância entre corpos massivos, Einstein, propõe que essa interação é, na

verdade, o resultado da curvatura presente no espaço-tempo causada pela presença de matéria e

energia [19].

Matematicamente, essa ideia é expressa pelas equações de campo de Einstein, relacionando o

conteúdo energético do universo com sua geometria intrínseca. Essas equações podem ser escritas

como

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (36)

Onde:

� Rµν é o tensor de Ricci, que mede a curvatura do espaço-tempo;

� R é o escalar de Ricci, obtido pela contração do tensor de Ricci Rµν com o tensor métrico

contravariante gµν , ou seja,

R = gµνRµν ; (37)

� gµν representa o tensor métrico, que descreve a geometria local do espaço-tempo;

� Tµν é o tensor energia-momento, que descreve a densidade e o �uxo de energia e momento

da matéria;

� G é a constante gravitacional de Newton, e c é a velocidade da luz no vácuo.

A equação evidencia que a curvatura do espaço-tempo, representada pelos termos Rµν e R, está

diretamente determinada pela presença de matéria e energia, expressa por Tµν . De forma essencial,

o lado esquerdo da equação vai traduzir a estrutura geométrica do espaço-tempo, enquanto o lado
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direito aborda o conteúdo físico que o deforma. Dessa maneira, matéria e energia não apenas

estão presentes no espaço-tempo, mas moldam propriamente a sua geometria.

Em regiões do espaço onde não há matéria ou radiação, isto é, no vácuo, o tensor energia-

momento vai se anular

Tµν = 0, (38)

e as equações de campo assumem a forma simpli�cada

Rµν = 0. (39)

Como destaca Carroll [13] as equações de Einstein no vácuo é simplesmente Rµν = 0. Isso

é um pouco menos intimidador e de considerável utilidade física, essa forma das equações de

Einstein, válida no vácuo, é fundamentalmente importante pois descreve como o espaço-tempo

tempo se comporta na ausência de fontes materiais, proporcionando a busca de soluções exatas

para caracterizar os campos gravitacionais puramente geométricos.

Dessa maneira, foi justamente ao resolver essas equações no caso estático e esfericamente

simétrico que Karl Schwarzschild, em 1916, encontrou a primeira solução exata da Relatividade

Geral, conhecida como a métrica de Schwarzschild. Essa solução, vai descrever o comportamento

do espaço-tempo ao redor de uma massa pontual ou de um corpo esférico não rotativo e sem carga

elétrica.

Essa formulação marca uma das maiores conquistas da teoria física moderna, pois a partir

dela passamos a observar a Gravitação não como uma força analisada pela geometria newtoniana,

mas uma manifestação da geometria presente no universo. Desse modo, fenômenos como o desvio

gravitacional da luz, o avanço do periélio de Mercúrio e existência dos buracos negros, puderam

apresentar ser explicados de forma natural dentro do arcabouço geométrico.

5.2 Previsões da teoria: avanço do periélio de Mercúrio, desvio da luz

por campos gravitacionais

A teoria mais geral da relatividade não apenas trouxe um novo conceito sobre gravidade, mas

também apresentou previsões observacionais de grande relevância para sua consolidação como uma

teoria física fundamental. Einstein, desde sua formulação, buscou a aplicação de suas equações

em situações concretas, proporcionando a explicação de diversos fenômenos astronômicos através

da curvatura do espaço-tempo [23].

Dentre as previsões, destaca-se o avanço no periélio de Mercúrio, o desvio da luz por campos

gravitacionais e a própria existência de buracos negros, como consequência rigorosa das equa-

ções de campo.
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5.2.1 Avanço do periélio de Mercúrio

Observamos no decorrer do trabalho que as leis de Newton representaram grande relevância

na ciência, já que permitiram concretamente analisar muitos problemas presentes na natureza,

com explicações e previsões importantes como a própria lei da gravitação universal. No contexto

astronômico, essa lei é fundamental pois garantia desde a descrição de órbitas a descoberta de

novos corpos planetários.

No entanto, em décadas, astrônomos observaram que o ponto de maior aproximação de Mer-

cúrio ao Sol (periélio) apresentava uma precessão adicional que não poderia ser explicada concre-

tamente pela gravitação newtoniana [5]. Essa diferença se aproximava de (∆ϕ ∼ 43”), ou seja,

segundos de arco por século, valor comprovadamente incompatível com as previsões clássicas [14].

Ao aplicar as equações de campo previstas pela teoria de Einstein, ao sistema Sol-Mercúrio, foi

demonstrado que a curvatura do espaço-tempo solar gera precisamente esse acréscimo, abordando

o problema de antes de forma satisfatória, trouxe uma das primeiras con�rmações da Relativi-

dade Geral [16].

Figura 3: Representação esquemática da precessão do periélio da órbita de Mercúrio ao redor do Sol,

mostrando o deslocamento gradual do ponto de máxima aproximação devido à curvatura do espaço-tempo.

Fonte: Autoria própria (2025).

Podemos observar que a órbita de Mercúrio não fecha sobre si mesma após cada revolução.

O periélio se desloca no sentido do movimento orbital, representado pelas sucessivas elipses que

apresentam uma rotação progressiva. Esse comportamento é explicado pela Relatividade Geral,

ao considerar a deformação do espaço-tempo causada pela grande massa solar.

5.2.2 Desvio da luz por campos gravitacionais

Os primeiros cálculos do desvio da luz pela gravidade foram realizados por Soldner, em 1801,

dentro da ótica newtoniana. No entanto, embora sua abordagem previsse uma de�exão luminosa, o

valor obtido era apenas metade do que seria posteriormente encontrado por Einstein [18]. Quando

tratamos da Relatividade Geral, a luz passa a ser entendida como seguindo geodésicas do espaço-
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tempo curvo, onde sofre naturalmente um desvio ao se propagar em regiões próximas a corpos

massivos.

Einstein então recalculou o ângulo de de�exão previsto para a luz ao passar próximo ao Sol,

obtendo o valor correto, que foi con�rmado experimentalmente em 1919 pelas medições de Arthur

Eddington durante um eclipse solar total.

Figura 4: Representação esquemática da de�exão da luz ao passar próxima ao Sol devido à curvatura do

espaço-tempo.

Fonte: Autoria própria (2025).

Conforme ilustrado na Figura 4, a trajetória da luz é desviada ao se propagar em regiões de

forte curvatura do espaço-tempo. Esse resultado tornou-se uma das primeiras e mais importantes

veri�cações observacionais da Relatividade Geral, consolidando o novo modelo gravitacional [18].

Atualmente, o fenômeno da lente gravitacional é essencial para a astrofísica e cosmologia

modernas, permitindo observar e estudar objetos extremamente distantes no Universo, muitas

vezes inacessíveis por outros meios.

6 Buracos Negros

As concepções primárias sobre os buracos negros remontam ao século XVIII. Em 1783, John

Michell analisou utilizando apenas os princípios da mecânica newtoniana e a lei da gravitação

universal, como uma dada estrela extremamente massiva e compacta teria ao seu redor um campo

gravitacional muito forte, não deixando nem mesmo a luz sair. Objeto esse denominado por

ele como "Estrelas escuras", não poderia ser vistos de forma direta, mas sim por sua in�uência

gravitacional a outros corpos. Posteriormente, Laplace em sua obra Exposition du Système du

Monde [21] traria uma relevante observação sobre esses objetos, que dizia não serem observáveis

por impossibilitar a luz de escapar, propondo a ideia de �corpo escuro�, ou seja, esses astros seriam

de certa forma invisíveis, pois impossibilitavam a saída de luz. Dessa maneira, as primeiras análises
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referentes a esses fenômenos gravitacionais são feitas de forma clássica, não trazendo menções a

curvatura do espaço-tempo.

Porém, somente no século XX, com o desenvolvimento da Relatividade Geral de Einstein, os

estudos sobre buracos negros ganhou rigorosamente um caráter matemático no seu desenvolvi-

mento com Karl Schwarzschild, em 1916. Pois de maneira correta, desenvolveu a primeira solução

exata das equações de campo de Einstein, também conhecida como a solução que descreve o bu-

raco negro de Schwarzschild [22]. Ao qual é caracterizada por uma simetria esférica e ausência

de rotação. Posteriormente, John Wheeler, em 1968, cunhou o termo �Buracos negros�, que foi

popularizado no meio cientí�co.

Com isso, partindo da lei de conservação da energia mecânica, podemos deduzir a velocidade

de escape de um corpo celeste e, em seguida, a condição necessária para a formação de um buraco

negro no contexto newtoniano. Primeiramente partiremos da energia total de um corpo de massa

m sob a in�uência gravitacional de um corpo massivo de massa M e raio R

E = Ec + Ep, (40)

onde, Ec =
1
2
mv2 é a energia cinética, Ep = −GMm

R
é a energia potencial gravitacional. Para que

o corpo escape do campo gravitacional, sua energia total deve ser zero no in�nito

1

2
mv2e −

GMm

R
= 0

1

2
v2e =

GM

R
, (41)

multiplicando ambos os lados por 2, encontramos a velocidade de escape

v2e =
2GM

R

ve =

√
2GM

R
, (42)

dessa maneira, se nem mesmo a luz consegue escapar, a velocidade de escape deve ser maior ou

igual à velocidade da luz c

ve ≥ c ⇒
√

2GM

R
≥ c

2GM

R
≥ c2

R ≤ 2GM

c2
, (43)

proporcionando encontrar o valor crítico abaixo

Rs =
2GM

c2
. (44)

Nessa expressão, Rs é conhecido como raio de Schwarzschild e de�ne o tamanho do horizonte de
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eventos de um buraco negro não rotativo no contexto da Relatividade Geral. A dedução acima

mostra como, mesmo a partir da mecânica clássica, já se tornou possível prever a existência de

corpos com gravidade tão rigorosamente forte, que evitavam que até a própria luz conseguisse

escapar. Esse limite, que representamos como raio de Schwarzschild, assume um papel importante

na Relatividade Geral, pois sendo interpretado como horizonte de eventos de um buraco negro,

nos mostra em outras palavras que qualquer objeto ou radiação que ultrapasse essa fronteira não

conseguirá retornar, sendo con�nada a região do buraco negro.

Essa transição do formalismo Clássico para o tratamento relativístico mostra uma robustez

da ideia central sobre o estudo de buracos negros, mas também, a necessidade de uma geometria

do espaço-tempo que mostra a compreensão dos fenômenos associados a esses objetos de extrema

força gravitacional, explicando como algumas concepções clássicas sobre a trajetória da luz por

exemplo, são diferentes agora no contexto relativístico.

Dessa forma, a evolução desse conceito, remonta uma transição importante na área gravitaci-

onal, pois caminha de uma primeira hipótese seguramente clássica para uma previsão inevitável

na Relatividade Geral. Com isso, sendo caracterizados como uma região do espaço-tempo na

qual a gravidade é tão alta que nada possa escapar, podemos partir para pontos principais que

caracterizam eles.

O raio de Schwarzschild, embora aqui sendo analisado a partir de considerações clássicas, vai

adquirir um signi�cado físico muito mais rigoroso na Relatividade Geral, já que vai de�nir o

limite além do qual nenhuma informação pode ser transmitida para o exterior. A partir disso,

a descrição dos buracos negros se organiza em torno de conceitos mais fundamentais, como a

singularidade central, o horizonte de eventos e os efeitos observáveis no espaço-tempo ao redor,

que serão seguramente detalhados a seguir.

6.1 Horizonte de Eventos

O horizonte de eventos é uma das característica mais fundamentais dos buracos negros. Pois,

de maneira sistemática trata-se de analisar o que de�ne o limite da região observável e a de

não retorno no espaço-tempo, já que nela a atração gravitacional é intensa o su�ciente para que

nem mesmo a luz não escape. Na solução de Schwarzschild, que analisaremos posteriormente,

esse fenômeno está presente no que chamamos de raio de Schwarzschild o qual já encontramos

utilizando uma analogia clássica 44.

Diferentemente de uma superfície material, o horizonte não é diretamente uma barreira física,

mas uma determinada barreira causal e matemática, dessa maneira qualquer evento que aconteça

dentro dessa região estudada não poderá afetar um observador externo a ela. Já que, o horizonte

de eventos vai atuar como um ponto sem retorno, mostrando o que conhecemos de transição a

parte acessível e não acessível do interior do buraco negro. Podemos com isso fazer uma analogia ao

que entendemos sobre a natureza relativa do tempo devido aos limites observáveis que o horizonte

de eventos propõe na observação. Um objeto que se aproxime dessa região será analisado por

um observador distante, como parecer desacelerar, e nunca realmente atravessar completamente

o horizonte, já que os efeitos de dilatação temporal da Relatividade Geral apresentam isso. No
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entanto, quando analisamos o próprio objeto em queda, a travessia ocorrerá em tempo �nito,

ilustrando a natureza relativística do tempo e do espaço próxima a buracos negros.

Assim, podemos notar que esse limite tem uma natureza geométrica signi�cativa, que depende

diretamente da massa do buraco negro. Isso fortalece a relação direta entre a massa do objeto

e a força do campo gravitacional que ele gera. A detecção direta desses sistemas compactos

tem sido di�cultada pela própria intensidade desse campo. No entanto, a presença dos discos

de acreção facilitou bastante sua observação. Como destacado por [13], buracos negros possuem

campos gravitacionais extremamente fortes. Portanto, uma das formas mais e�cientes de detectá-

los é analisando o comportamento da matéria em suas proximidades. Quando o gás ou outros

materiais se aproximam de um buraco negro, eles aquecem gradualmente e começam a emitir

radiação, geralmente na faixa dos raios X. Isso permite que sejam detectados por observatórios

espaciais.

No entanto, vale ressaltar que o disco de acreção não está incluído na solução idealizada

apresentada por Schwarzschild, que descreve o espaço-tempo externo a uma massa esférica, estática

e isolada. Essa solução de vácuo não considera a matéria circundante, os �uxos de gás, as colisões

ou qualquer mecanismo que cause dissipação. Ainda assim, no cenário astrofísico, buracos negros

reais costumam estar rodeados por discos de acreção, formados pelo acúmulo de gás, poeira e

detritos que orbitam e, aos poucos, perdem momento angular até atravessarem o horizonte de

eventos.

Durante esse processo de queda, as partículas do disco experimentam atrito e compressão, o

que aumenta sua temperatura e faz com que emitam radiação eletromagnética de alta energia.

Portanto, mesmo que o disco de acreção não esteja incluído na estrutura matemática da solução de

Schwarzschild, ele desempenha um papel fundamental na observação desses objetos, possibilitando

a estimativa de parâmetros como a massa do buraco negro e sua taxa de acreção. Embora seja

importante para a astrofísica, o disco de acreção não é o foco principal deste estudo.

A menção a ele aqui visa situar sua função na detecção observacional de buracos negros e

contextualizar a aplicação física da métrica de Schwarzschild. Essa descrição ainda é válida para

caracterizar a geometria do espaço-tempo fora do horizonte de eventos, área em que o regime de

vácuo é uma aproximação apropriada.

6.2 Singularidade

No centro de um buraco negro, segundo a Relatividade Geral, podemos encontrar a chamada

singularidade gravitacional. Onde, trata-se de uma região no qual certas quantidades geométricas

como a densidade efetiva da matéria e os escalares de curvatura tendem ao in�nito. Em termos

conceituais, seria o ponto em que toda a massa do buraco negro estaria concentrada em um

volume que se aproxima de zero, e a curvatura do espaço-tempo se torna ilimitada. Essas previsões

impostas sugerem que a teoria, deixa de fornecer descrições físicas válidas nessa região.

Quando analisamos Matematicamente, a singularidade surge como solução das equações de

Einstein, de forma particular na métrica de Schwarzschild, quando r → 0. Nesse limite, as gran-

dezas físicas como densidade de energia e curvatura, deixam de serem descritas de forma �nita,
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indicando uma quebra no poder explicativo da teoria. É importante ressaltar, porém, que a mãe

existência de uma singularidade não signi�ca necessariamente que a natureza apresente de fato

esses in�nitos físicos, mas sim, apenas propõe o limite de aplicabilidade da teórica relativística.

Devido a isso, é muitos vezes vista a singularidade como possível indício de que haja uma te-

oria mais completa da Gravitação - como por exemplo, unindo a Relatividade com a Mecânica

Quântica, para descrição mais adequada do interior de um buraco negro.

Fisicamente, a singularidade está representada como a região inacessível de um buraco negro.

Ou seja, qualquer partícula ou radiação que ultrapasse o horizonte de eventos que vimos ante-

riormente, será inevitavelmente conduzida ao centro, atingindo a singularidade em tempo �nito

conforme seu próprio referencial. Dessa forma, ela atua como uma espécie de �m de trajetória no

espaço-tempo, já que todas as geodésicas convergem.

Conceitualmente, a ideia traz implicações profundas, já que questiona até mesmo onde nossa

abordagem teórica física pode ser estendida. Portanto, a singularidade dos buracos negros consti-

tui não apenas o centro matemática da solução de Schwarzschild, mas também vai propor o limite

do conhecimento físico atual. Mostrando nesse ponto um dos maiores desa�os da ciência contem-

porânea.

6.3 Métrica de Karl Schwarzschild

Um dos principais resultados da Relatividade Geral foi obtido em 1916 por Karl Schwarzschild,

que encontrou a primeira solução exata das equações de campo de Einstein. Essa solução propõe

descrever o espaço-tempo fora de uma distribuição de massa esférica, estática e não carregada,

sendo a base para o estudo da geometria de um buraco negro simétrico que procuramos entender

no andamento dos capítulos.

Para realizar a dedução analítica da solução, inicia-se considerando o caso mais elementar: um

espaço-tempo sem curvatura, denominado espaço-tempo plano. Esse tipo de geometria é descrito

pela métrica de Minkowski

ds2 = −dt2 + dx2 + dy2 + dz2. (45)

Essa métrica é o ponto de partida para comparações com geometrias mais complexas, como a

métrica de Schwarzschild, permitindo avaliar como a gravidade altera a estrutura do espaço-

tempo. Dessa forma, a Eq.(45) está escrita nas coordenadas cartesianas (t, x, y, z). Para problemas

com simetria esférica, como no caso da solução de Schwarzschild é conveniente usar coordenadas

esféricas (t, r, θ, ϕ).

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θ dϕ2. (46)

Dessa maneira, sabendo que as equações de campo de Einstein são expressas pela equação 36, e

como vimos anteriormente, fora da distribuição de matéria, o tensor energia-momento se anula

no vácuo,38. Com isso, como estamos interessados na solução fora de um corpo esférico, nos

preocupando com a equação de Einstein no vácuo 39. A métrica procurada deve ser estática
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(sem termos cruzados e sem dependência temporal) e apresentar simetria esférica, de modo que a

parte angular mantenha a forma r2dθ2 + r2 sin2 θ dϕ2. As propriedades de simetria esférica estão

associadas à existência de três vetores de Killing independentes na (S2), conforme demonstrado

no Apêndice 8.3.

Admitindo que os coe�cientes dependam apenas da coordenada radial r, a métrica mais geral

compatível com essas exigências pode ser escrita como

ds2 = −e2α(r)dt2 + e2β(r)dr2 + e2γ(r)r2dΩ2, (47)

onde dΩ2 = dθ2 + sin2 θ dϕ2.

Pode-se ver que a assinatura da métrica permanece a mesma, mesmo com a introdução das

funções exponenciais nos coe�cientes. Para simpli�car sua forma, é conveniente eliminar essa

dependência exponencial por meio de uma mudança na coordenada radial, introduzindo uma

nova coordenada r̄. Expressa por

r̄ = eγ(r)r. (48)

Assim, introduzimos essa nova coordenada r̄, de forma a absorver a função γ(r) e fazer com que

os termos angulares assumam a forma padrão r̄2dΩ2, preservando a simetria esférica.

Derivando a Eq.(48) em relação a r, obtém-se a expressão diferencial

dr̄ = eγ(r)
(
1 + r

dγ

dr

)
dr. (49)

Elevando ambos os lados da Eq.(49) ao quadrado e isolando dr2, encontramos

dr2 = e−2γ(r)

(
1 + r

dγ

dr

)−2

dr̄2.

Substituindo esta relação na métrica inicial, obtemos a nova forma em termos de (t, r̄, θ, ϕ)

ds2 = −e2α(r)dt2 + e2β(r)e−2γ(r)

(
1 + r

dγ

dr

)−2

dr̄2 + r̄2dΩ2

= −e2α(r)dt2 + e2β(r)−2γ(r)

(
1 + r

dγ

dr

)−2

dr̄2 + r̄2dΩ2. (50)

Considerando o caso particular em que γ(r) → 0, ou seja, eliminando a reparametrização radial,

temos r̄ → r

e2β(r)−2γ(r)

(
1 + r

dγ

dr

)−2

→ e2β(r). (51)

Assim, a Eq.(50) retorna à forma padrão da métrica

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2. (52)
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Essa forma revela explicitamente a natureza estática e esfericamente simétrica do espaço-tempo

fora de uma distribuição de massa.

As componentes covariantes são dadas por

gµν =


gtt gtr gtθ gtϕ

grt grr grθ grϕ

gθt gθr gθθ gθϕ

gϕt gϕr gϕθ gϕϕ

 . (53)

Onde;

gµν =


−e2α(r) 0 0 0

0 e2β(r) 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 , (54)

e as contravariantes correspondentes

gµν =


− 1

e2α(r) 0 0 0

0 1
e2β(r)

0 0

0 0 1
r2

0

0 0 0 1
r2 sin2 θ

 . (55)

Os símbolos de Christo�ell associados a métrica, Eq.(52), são obtidos a partir da relação

Γµ
αβ =

1

2
gµρ
(
∂gαρ
∂xβ

+
∂gβρ
∂xα

− ∂gαβ
∂xρ

)
, (56)

sendo os valores não nulos dados por

Γt
tr = ∂rα(r),

Γr
tt = e2(α−β) ∂rα(r),

Γr
rr = ∂rβ(r),

Γr
θθ = −re−2β,

Γr
ϕϕ = −re−2β sin2 θ,

Γθ
rθ = Γϕ

rϕ =
1

r
,

Γθ
ϕϕ = − sin θ cos θ,

Γϕ
θϕ = cot θ, (57)

encontramos as componentes não nulas do tensor de Riemann, ao qual descreve a curvatura do
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espaço-tempo

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ. (58)

Usando as conexões não nulas, obtemos

Rt
rtr = −∂rΓ

t
tr + Γt

trΓ
r
rr − Γt

rtΓ
t
tr

= −∂r(∂rα) + ∂rα∂rβ − (∂rα)
2

= ∂rα∂rβ − ∂2
rα− (∂rα)

2. (59)

Rt
θtθ = ∂tΓ

t
θθ − ∂θΓ

t
tθ + Γt

tλΓ
λ
θθ − Γt

θλΓ
λ
tθ

= Γt
trΓ

r
θθ

= ∂rα · (−re−2β)

= −re−2β∂rα, (60)

Rt
ϕtϕ = ∂tΓ

t
ϕϕ − ∂ϕΓ

t
tϕ + Γt

tλΓ
λ
ϕϕ − Γt

ϕλΓ
λ
tϕ

= Γt
trΓ

r
ϕϕ

= ∂rα · (−re−2β sin2 θ)

= −re−2β sin2 θ∂rα, (61)

Rr
θrθ = ∂rΓ

r
θθ − ∂θΓ

r
rθ + Γr

rλΓ
λ
θθ − Γr

θλΓ
λ
rθ

= ∂rΓ
r
θθ + Γr

rrΓ
r
θθ − ΓrΓθθΓ

θ
rθ

= ∂r(−re−2β) + (∂rβ)(−re−2β)− (−re−2β)(
1

r
)

= −e−2β + 2r−2β∂rβ − re−2β∂rβ + e−2β

= re−2β∂rβ, (62)

Rr
ϕrϕ = ∂rΓ

r
ϕϕ − ∂ϕΓ

r
rϕ + Γr

rλΓ
λ
ϕϕ − Γr

ϕλΓ
λ
rϕ

= ∂rΓ
r
ϕϕ + Γr

rrΓ
r
ϕϕ − Γr

ϕϕΓ
ϕ
rϕ

= ∂r(re
−2β sin2 θ) + ∂rβ(−re−2β sin2 θ)− (−re−2β sin2 θ) · 1

r
= −e−2β sin2 θ + 2re−2β sin2 θ∂rβ − re−2β sin2 θ∂rβ + e−2β sin2 θ

= re−2β sin2 θ∂rβ, (63)
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Rθ
ϕθϕ = ∂θΓ

θ
ϕϕ − ∂ϕΓ

θ
θϕ + Γθ

θλΓ
λ
ϕϕ − Γθ

ϕλΓ
λ
θϕ

= ∂θΓ
θ
ϕϕ + Γθ

θrΓ
r
ϕϕ − Γθ

ϕϕΓ
ϕ
θϕ

= ∂θ(− sin θ cos θ) +
1

r
· (re−2β sin2 θ)− (− sin θ cos θ) · cos θ

sin θ
= −[cos θ cos θ + sin θ(− sin θ)]− e−2β sin2 θ + cos2 θ

= −(cos2 θ − sin2 θ)− e−2β sin2 θ + cos2 θ

= − cos2 θ + sin2 θ − e−2β sin2 θ + cos2 θ

= sin2 θ − e−2β sin2 θ

= sin2 θ(1− e−2β). (64)

Contraindo o tensor de Riemann, obtemos o tensor de Ricci

Rµν = Rρ
µρν = ∂ρΓ

ρ
νµ − ∂νΓ

ρ
ρµ + Γρ

ρλΓ
λ
νµ − Γρ

νλΓ
λ
ρµ. (65)

As componentes não nulas são

Rtt = e2(α−β)

[
∂2
rα + ∂rα∂rβ − (∂rα)

2 +
2

r
∂rα

]
,

Rrr = −∂2
rα− (∂rα)

2 + ∂rα∂rβ +
2

r
∂rβ,

Rθθ = e−2β[r(∂rβ − ∂rα)− 1] + 1,

Rϕϕ = sin2 θRθθ.

O escalar de Ricci é o traço, ver apêndice 8.2

R = gµνRµν = Rt
t +Rr

r +Rθ
θ +Rϕ

ϕ. (66)

Impondo o vácuo, Rtt = 0 e Rrr = 0, temos

∂2
rα + (∂rα)

2 − ∂rα∂rβ +
2

r
∂rα = 0, (67)

−∂2
rα− (∂rα)

2 + ∂rα∂rβ +
2

r
∂rβ = 0. (68)

Somando as equações, obtemos

2

r
(∂rα + ∂rβ) = 0, (69)

integrando a relação obtida na Eq.(69), temos∫
∂rα(r) dr = −

∫
∂rβ(r) dr, (70)
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o que resulta em

α(r) = −β(r) + c, (71)

sendo c uma constante de integração.

A partir de Rθθ = 0, temos

e−2β[r(∂rβ − ∂rα)− 1] + 1 = 0, (72)

ou, equivalentemente,

∂r
(
re2α

)
= 1. (73)

Integrando, encontramos

re2α + c1 = r + c2,

e2α = 1− Rs

r
, (74)

onde Rs = c2 − c1. Substituindo e2α(r) na métrica, temos

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2

= −e2α(r)dt2 + e−2α(r)dr2 + r2dΩ2

= −
(
1− Rs

r

)
dt2 +

(
1− Rs

r

)−1

dr2 + r2dΩ2.

No limite de campo fraco, Rs = 2GM , obtendo-se

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2. (75)

A métrica corresponde à solução de Schwarzschild, que descreve o espaço-tempo gerado por um

corpo estático e esfericamente simétrico.

Com isso, essa métrica apresenta propriedades fundamentais signi�cativas. Quando r → ∞,

recupera-se o espaço plano de Minkowski, indicando que o espaço-tempo é assintoticamente plano.

Ou seja, Quando r → ∞, os termos 2GM
rc2

tendem a zero, de modo que

gtt → −1, grr → +1, (76)

e a métrica se reduz ao esperado na teoria

ds2 ≈ −c2dt2 + dr2 + r2dΩ2, (77)

que é exatamente o espaço plano de Minkowski em coordenadas esféricas.

Em r = Rs, surge o horizonte de eventos, que, como discutido anteriormente, vai representar
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a fronteira a partir da qual nenhuma informação pode escapar, nem mesmo a luz. Nessa região,

os coe�cientes da métrica assumem comportamentos característicos

gtt = −
(
1− Rs

r

)
→ 0, (78)

grr =

(
1− Rs

r

)−1

→ ∞, (79)

Essas condições indicam o aparecimento de uma singularidade de coordenadas, associada não

a uma curvatura in�nita, mas a uma superfície-limite do espaço-tempo o horizonte de eventos a

partir da qual nenhuma in�uência causal pode alcançar um observador situado no in�nito. Já

no limite r → 0, a curvatura do espaço-tempo torna-se in�nita, caracterizando a singularidade

central. Nessa região, os invariantes de curvatura divergem, e as leis conhecidas da Física deixam

de descrever adequadamente o comportamento da matéria e da geometria, marcando os limites

de validade da Relatividade Geral.

Portanto, a solução de Schwarzschild ilustra a base matemática para o estudo da geometria do

espaço-tempo em torno de buracos negros simétricos, foco central deste trabalho. Como também,

mostra implicação da Relatividade Geral ao reformular as noções de gravidade: não mais como

uma força, mas como a expressão direta da geometria do espaço-tempo em torno de uma massa.

7 Conclusão

Ao longo deste trabalho, buscou-se compreender, de forma conceitual e matemática, a geo-

metria do espaço-tempo em torno de um buraco negro simétrico, tomando como base teórica a

Relatividade Geral de Albert Einstein. A partir de uma abordagem que caminhou desde os fun-

damentos da mecânica clássica até o formalismo relativístico, foi possível notar como as funções

tradicionais acerca de espaço e tempo, que antes eram vistos como absolutos, deram lugar a uma

concepção uni�cada e inteiramente dinâmica dessas entidades, cuja curvatura agora é determinada

pela presença de massa e energia.

Dessa forma, ao longo do estudo, é evidente a profunda mudança de paradigma pela Relativi-

dade Geral, que trouxe uma nova interpretação à gravidade, não mais como força de atração entre

corpos, mas como manifestação geométrica do espaço-tempo. Essa nova maneira de ver a gravi-

dade permitiu explicar fenômenos que a física newtoniana não conseguia descrever precisamente,

como o avanço do periélio de Mercúrio, a de�exão da luz em campos gravitacionais e, de modo

especial, os buracos negros.

Com isso, a partir da solução exata das equações de Einstein para o caso estático e esferi-

camente simétrico (métrica de Schwarzschild), foi possível analisar os principais elementos que

vão caracterizar um buraco negro. Como horizonte de eventos, singularidade e o comportamento

da matéria próximo a essas regiões. Essa métrica tornou-se uma das soluções mais elegantes da

física moderna, pois traduz com precisão essa relação direta entre geometria e gravitação. Além

disso, a compreensão da métrica de Schwarzschild e suas implicações oferece essencialmente um
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caminho para o entendimento de fenômenos astrofísicos extremos e para o desenvolvimento de

modelos cosmológicos mais amplos. Em termos educacionais e cientí�cos, este trabalho reforça

a importância de aproximar o estudante da física teórica, mostrando uma visão geométrica do

universo e destacando de forma concreta a relação entre matemática e os fenômenos naturais. O

estudo sobre a geometria do espaço-tempo em torno de buracos negros, portanto, não vai apenas

aprofundar o entendimento sobre a natureza da gravidade, mas também ampliar a perspectiva

sobre o funcionamento do universo.
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8 Apêndice

8.1 Transformações de Lorentz

As transformações de Galileu, utilizadas na mecânica clássica, pressupõem que o tempo é

absoluto e que as leis da física permanecem invariantes em todos os referenciais inerciais. No

entanto, esse conjunto de transformações se mostrou inadequado para descrever fenômenos eletro-

magnéticos. Dessa forma, a incompatibilidade entre o eletromagnetismo clássico e a abordagem

newtoniana levou à necessidade de reformular o conceito de espaço e tempo e buscar transforma-

ções que respeitassem os postulados fundamentais da Relatividade propostos por Albert Einstein.

Lorentz, em 1904 descobriu um conjunto de transformações que deixava inalterada a estrutura

matemática das equações de Maxwell, garantindo sua covariância mesmo quando se realizava uma

mudança de referencial inercial. Dessa forma, seu resultado propôs propriedades profundas do

espaço-tempo e antecipou aspectos essenciais da Relatividade Restrita.

As transformações de Lorentz explicam a relação entre as coordenadas de espaço e tempo em

dois referenciais inerciais que se movem com velocidade constante. Considerando que o referen-

cial S ′ se move com velocidade constante v ao longo do eixo x em relação ao referencial S, as

transformações são dadas por

x′ = γ(x− vt),

y′ = y,

z′ = z,

t′ = γ
(
t− vx

c2

)
, (80)

onde o fator de Lorentz é de�nido por

γ =
1√

1− v2

c2

,

=
1√

1− β2
. (81)

Sendo, β = v/c o parâmetro adimensional de velocidade. As coordenadas y e z vão perma-

necer inalteradas, pois o movimento relativo ocorre apenas na direção do eixo x. Dessa forma, a

principal diferença entre as transformações de Lorentz e as transformações de Galileu é que, além

de juntarem espaço e tempo, as transformações relativísticas introduzem dependência temporal

e espacial na determinação simultânea de eventos, trazendo ruptura com o conceito de tempo

absoluto.

Além disso, um aspecto fundamental é que, para velocidades muito menores que a velocidade

da luz (v ≪ c), o fator de Lorentz se aproxima de γ ≈ 1. Nesse limite, as transformações

de Lorentz reduzem-se às transformações de Galileu, mostrando como a mecânica clássica surge

como um caso particular da Relatividade restrita para baixas velocidades.
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Já para velocidades próximas à da luz (v ≈ c), as transformações de Galileu deixam de ser

precisas, pois ignoram a variação relativística do tempo e do espaço. Nesse regime, apenas as

transformações de Lorentz descrevem corretamente os fenômenos físicos, evidenciando a falha da

abordagem galileana em altas velocidades. Dessa maneira, as Transformações de Lorentz desem-

penham um papel central na física moderna, garantindo a compatibilidade entre os postulados da

Relatividade Restrita e o comportamento do eletromagnetismo, além de estabelecerem a estrutura

geométrica do espaço-tempo relativístico.

8.2 Cálculo da Curvatura Escalar de Ricci

Neste apêndice é apresentado o cálculo detalhado da curvatura escalar de Ricci para uma

métrica estática e esfericamente simétrica. O ponto de partida é a de�nição do traço do tensor de

Ricci:

R = gµνR µν = Rµ
µ = Rt

t +Rr
r +Rθ

θ +Rϕ
ϕ. (82)

Os componentes mistos do tensor de Ricci são dados por

Rt
t = − 1

e2α

[
e2α

e2β

(
∂2
rα + (∂rα)

2 − ∂rα∂rβ +
2

r
∂rα

)]
= −e−2β

[
∂2
rα + (∂rα)

2 − ∂rα∂rβ +
2

r
∂rα

]
,

Rr
r = e−2β

[
−∂2

rα− (∂rα)
2 + ∂rα∂rβ +

2

r
∂rβ

]
,

Rθ
θ =

1

r2
(
e−2β [r(∂rβ − ∂rα)− 1] + 1

)
,

Rϕ
ϕ =

1

r2 sin2 θ

[
sin2 θ

(
re−2β∂rβ − re−2β∂rα− e−2β + 1

)]
. (83)

Realizando as substituições apropriadas, obtém-se a expressão da curvatura escalar

R =

[
−e−2β

(
∂2
rα + (∂rα)

2 − ∂rα∂rβ +
2

r
∂rα

)]
+

[
e−2β

(
−∂2

rα− (∂rα)
2 + ∂rα∂rβ +

2

r
∂rβ

)]
+

[
e−2β

r
∂rβ − e−2β

r
∂rα− e−2β

r
+

1

r2

]
+

[
e−2β

r
∂rβ − e−2β

r
∂rα− e−2β

r2
+

1

r2

]
. (84)

Simpli�cando os termos, tem-se �nalmente

R = −2e−2β

[
∂2
rα + (∂rα)

2 − ∂rα∂rβ +
2

r
(∂rα− ∂rβ) +

1

r2
(1− e−2β)

]
. (85)
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A relação entre as funções α(r) e β(r), presentes nos expoentes que multiplicam os coe�cientes da

métrica na Eq.(52), é obtida impondo as condições Rtt = 0 e Rrr = 0:

Rtt = e2(α−β)

[
∂2
rα + (∂rα)

2 − ∂rα∂rβ +
2

r
∂rα

]
= 0, (86)

Rrr = −∂2
rα− (∂rα)

2 + ∂rα∂rβ +
2

r
∂rβ = 0. (87)

A partir das Eqs. (86) e (87), obtém-se o seguinte sistema:

∂2
rα + (∂rα)

2 − ∂rα∂rβ +
2

r
∂rα = Rtte

2(α−β),

−∂2
rα− (∂rα)

2 + ∂rα∂rβ +
2

r
∂rβ = Rrr. (88)

Subtraindo as equações acima, chega-se à seguinte relação entre as derivadas das funções

2

r
(∂rα + ∂rβ) = 0. (89)

Esta relação mostra que as funções α(r) e β(r) estão relacionadas de forma que sua soma é

constante, o que simpli�ca signi�cativamente a forma da métrica, auxiliando na determinação da

solução �nal.

8.3 Vetores de Killing da 2-Esfera (S2)

Neste apêndice, abordaremos a dedução explícita dos vetores de Killing da esfera (S2), isto

é, os campos vetoriais que preservam a métrica sob transformações in�nitesimais. Esses vetores

estão associados diretamente às simetrias de rotação da superfície esférica, onde desempenham

um papel fundamental na compreensão das isotropias presentes na métrica de Schwarzschild. A

métrica da esfera de raio a é expressa por

ds2 = a2dθ2 + a2 sin2 θ dϕ2. (90)

A equação de Killing é escrita em termos das derivadas covariantes e requer o conhecimento dos

símbolos de Christo�el associados a esta métrica. Relembrando os resultados obtidos anterior-

mente, temos os componentes não nulos

Γϕ
ϕθ = Γϕ

θϕ = cot θ, Γθ
ϕϕ = − sin θ cos θ. (91)

A derivada covariante de um vetor V a é dada por

∇bV
a = ∂bV

a + Γa
cbV

c. (92)
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Aplicando a equação de Killing componente a componente, iniciamos pelo caso a = b = θ. Obte-

mos

∇θX
θ +∇θX

θ = 0 ⇒ ∇θX
θ = 0. (93)

Substituindo a expressão da derivada covariante, temos

∇θX
θ = ∂θX

θ − Γθ
θθX

θ − Γϕ
θθX

ϕ. (94)

Como Γθ
θθ = Γϕ

θθ = 0, a equação se reduz a

∂θX
θ = 0. (95)

Logo, a componente Xθ é independente de θ, dependendo apenas de ϕ

Xθ = f(ϕ). (96)

Prosseguindo com o caso a = b = ϕ, a equação de Killing torna-se

∇ϕX
ϕ = 0. (97)

Desenvolvendo a derivada covariante

∇ϕX
ϕ = ∂ϕX

ϕ − Γθ
ϕϕX

θ − Γϕ
ϕϕX

ϕ. (98)

Como Γθ
ϕϕ = − sin θ cos θ e Γϕ

ϕϕ = 0, obtemos

∂Xϕ

∂ϕ
= − sin θ cos θ f(ϕ). (99)

Integrando em relação a ϕ, resulta

Xϕ = − sin θ cos θ

∫
f(ϕ) dϕ+ g(θ), (100)

onde g(θ) é uma função ainda indeterminada.

Agora consideramos o caso misto a = θ e b = ϕ, que fornece a última equação independente

∇θX
ϕ +∇ϕX

θ = 0. (101)

Cada termo é calculado separadamente. O primeiro é

∇θX
ϕ = ∂θX

ϕ − Γϕ
ϕθX

ϕ = ∂θX
ϕ − cot θ Xϕ, (102)
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e o segundo termo é

∇ϕX
θ = ∂ϕX

θ − Γϕ
θϕX

ϕ = ∂ϕX
θ − cot θ Xϕ. (103)

Assim, a equação de Killing se torna

∂θX
ϕ + ∂ϕX

θ − 2 cot θ Xϕ = 0. (104)

Podemos agora re�nar a equação mista utilizando as expressões previamente obtidas para Xθ e

Xϕ. Assim, escrevemos

∂θX
ϕ = ∂θ

(
− sin θ cos θ

∫
f(ϕ) dϕ+ g(θ)

)
, (105)

calculando essa derivada

∂θX
ϕ = (sin2 θ − cos2 θ)

∫
f(ϕ) dϕ+

dg(θ)

dθ
, (106)

enquanto

∂ϕX
θ =

df(ϕ)

dϕ
. (107)

Substituindo esses resultados na equação 104, obtemos

(sin2 θ − cos2 θ)

∫
f(ϕ) dϕ+

dg(θ)

dθ
+

df(ϕ)

dϕ
= 2 cot θ

(
− sin θ cos θ

∫
f(ϕ) dϕ+ g(θ)

)
. (108)

Simpli�cando o termo à direita e usando cot θ (sin θ cos θ) = cos2 θ, a equação torna-se

(sin2 θ − cos2 θ)

∫
f(ϕ) dϕ+

dg(θ)

dθ
+

df(ϕ)

dϕ
= −2 cos2 θ

∫
f(ϕ) dϕ+ 2 cot θ g(θ). (109)

Reorganizando os termos, podemos separar as variáveis de modo que todos os termos em ϕ �quem

em um lado e os termos em θ no outro∫
f(ϕ) dϕ+

df(ϕ)

dϕ
= 2 cot θ g(θ)− dg(θ)

dθ
. (110)

Como o lado esquerdo depende apenas de ϕ e o direito apenas de θ, concluímos que ambos devem

ser iguais a uma constante k, ou seja∫
f(ϕ) dϕ+

df(ϕ)

dϕ
= k,

dg(θ)

dθ
− 2 cot θ g(θ) = −k. (111)

A segunda equação é uma EDO linear de primeira ordem, e podemos resolvê-la utilizando o
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método do fator integrante. Escrevendo-a na forma padrão g′(θ) + p(θ)g(θ) = r(θ), identi�camos

p(θ) = −2 cot θ, r(θ) = −k. (112)

O fator integrante é dado por e
∫
p(θ) dθ, o que fornece

P (θ) =

∫
−2 cot θ dθ = −2 ln(sin θ), e−P (θ) = sin2 θ. (113)

Aplicando a fórmula geral para equações desse tipo, obtemos

g(θ) = sin2 θ

∫
(−k)

sin2 t
dt+ C sin2 θ, (114)

onde C é a constante de integração. Como
∫

1
sin2 t

dt = − cot t, o resultado �nal é

g(θ) = sin2 θ(k cot θ + C). (115)

Agora resolvemos a equação para f(ϕ)∫
f(ϕ) dϕ+

df(ϕ)

dϕ
= k. (116)

Derivando ambos os lados, obtemos

d2f

dϕ2
+ f(ϕ) = 0, (117)

cuja solução geral é:

f(ϕ) = A cosϕ+B sinϕ. (118)

A substituição mostra que k = 0, levando a

g(θ) = C sin2 θ. (119)

Reunindo os resultados:

Xθ = A cosϕ+B sinϕ,

Xϕ = − sin θ cos θ(A sinϕ−B cosϕ) + C sin2 θ. (120)

Elevando os índices com a métrica, obtemos

Xθ = Xθ,

Xϕ =
Xϕ

sin2 θ
. (121)
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O vetor de Killing completo é, portanto

X = Xθ ∂

∂θ
+Xϕ ∂

∂ϕ

= (A cosϕ+B sinϕ)
∂

∂θ
+ [C − cot θ(A sinϕ−B cosϕ)]

∂

∂ϕ

= −ALx +BLy + CLz, (122)

onde os operadores de momento angular são de�nidos por

Lx = − cosϕ
∂

∂θ
+ cot θ sinϕ

∂

∂ϕ
,

Ly = sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ
,

Lz =
∂

∂ϕ
. (123)

Esses três vetores de Killing correspondem às simetrias de rotação da S2. Dessa forma, de-

monstramos explicitamente que as simetrias da S2 estão intimamente ligadas à conservação do

momento angular, conceito essencial para a compreensão da estrutura esférica do espaço-tempo

Schwarzschild discutido ao longo deste trabalho.
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