CAMPUS ALEXANDRE ALVES DE OLIVEIRA
BACHARELADO EM CIENCIA DA COMPUTACAO BACHARELADD EM

CIENCIA DA COMPUTAGAD

UESPI - PRANATEA

UNIVERSIDADE ESTADUAL DO PIAUI — UESPI ()

MARIA GRAZIELA BRITO DE SOUZA

UM SISTEMA DE AGENDAMENTO ASSINCRONO PARA OTIMIZACAO DO
ACOMPANHAMENTO DE TRATAMENTO REMOTO DE PACIENTES

Parnaiba — Piaui
2025

MARIA GRAZIELA BRITO DE SOUZA

UM SISTEMA DE AGENDAMENTO ASSINCRONO PARA
OTIMIZACAO DO ACOMPANHAMENTO DE TRATAMENTO
REMOTO DE PACIENTES

Trabalho de Conclusdo de Curso (artigo)
apresentado ao Curso de Bacharelado em
Ciéncia da Computacdo da Universidade
Estadual do Piaui, Campus Alexandre Alves
de Oliveira, como requisito parcial para
obtengdo do grau de bacharel em Ciéncia da
Computagao.

Orientador: Prof. Dr. Dario Brito Cal¢ada

Parnaiba — Piaui
2025

Um Sistema de Agendamento Assincrono para Otimizacio do
Acompanhamento de Tratamento Remoto de Pacientes

Maria G. B. de Souza!®, Dario Brito Cal¢ada’

'Universidade Estadual do Piaui (UESPI) — Parnaiba — PI — Brasil

*{mariagrazielabritodes@aluno.uespi.br}

Abstract. This article describes the development and analysis of the
Remote Treatment - Message Scheduling System, a backend solution
designed to optimize proactive communication with patients in remote
monitoring. The system uses an architecture based on Django and Celery
to manage the scheduling and asynchronous sending of channel messages
email. The proposed architecture ensures the scalability and reliability
of the communication process, preventing mass message sending from
compromising the main applications performance. The results analysis
demonstrated the technical feasibility of the solution and its contribution
to the area, offering a robust tool for managing treatment adherence.

Resumo. O presente artigo descreve o desenvolvimento e a andlise do Remote
Treatment - Sistema de Agendamento de Mensagens, uma solucio de backend
projetada para otimizar a comunicacdo proativa com pacientes em
acompanhamento remoto. O sistema utiliza uma arquitetura baseada em Django
e Celery para gerenciar o agendamento e o envio assincrono de mensagens
multicanal e-mail. A arquitetura proposta garante a escalabilidade e a
confiabilidade do processo de comunicacdo, impedindo que o envio de
mensagens em massa comprometa a performance da aplicacdo principal. A
analise de resultados demonstrou a viabilidade técnica da solucdo ¢ sua
contribuicdo para a area, oferecendo uma ferramenta robusta para a gestdo da
adesdo ao tratamento.

1.Introducao

A gestdo de servicos remotos € o acompanhamento a distdncia tém reconfigurado
substancialmente as praticas em programas de longo prazo, particularmente no ambito
de tratamentos e monitoramentos de pacientes [Postal et al. 2021]. Essa transformacao,
impulsionada por avangos tecnoldgicos e pela crescente demanda por flexibilidade e
acessibilidade em satde, permite 0 monitoramento continuo € a comunicagdo proativa
fora dos ambientes tradicionais de atendimento. Tal abordagem revela-se essencial para
fomentar a adesdo ao tratamento, mitigar riscos de descontinuidade e maximizar os
desfechos clinicos, consolidando-se como um pilar da satide digital contemporanea.
Nesse contexto, a eficiéncia na comunicagdo e no agendamento de interagdes
assincronas emerge como um fator critico para o éxito das intervengdes em saude.

Entretanto, apesar dos progressos tecnoldgicos observados na telemedicina, os
processos de comunicacdo e agendamento de mensagens de acompanhamento
frequentemente permanecem manuais ou semi-automatizados. Essa dependéncia de
intervencdo humana resulta em ineficiéncias significativas, como atrasos na entrega de
informacdes cruciais, erros operacionais e sobrecarga para as equipes de saude, que se

veem impedidas de escalar suas operagdes de forma eficaz [Dantas 2016]. A auséncia
de sistemas robustos, escalaveis e interoperaveis para o envio automatizado de
lembretes e mensagens informativas, especialmente via canais de ampla acessibilidade
como WhatsApp e e-mail, constitui uma lacuna critica tanto na literatura quanto na
pratica clinica. Tal deficiéncia ndo apenas compromete a continuidade dos programas
de tratamento, mas também diminui a eficacia global do acompanhamento remoto,
levantando questdes prementes sobre a otimizagao de recursos e a equidade no acesso a
cuidados em saude.

Diante dessa lacuna e da necessidade imperativa de otimizar a comunicagido em
saude remota, o presente trabalho propode-se a responder a seguinte pergunta de
pesquisa: Como um sistema de agendamento assincrono, baseado em uma arquitetura
de microsservigos, pode otimizar a comunicagdo proativa em tratamentos remotos,
mitigando ineficiéncias operacionais e promovendo a adesdo do paciente? O objetivo
geral ¢ desenvolver e analisar o sistema Remote Treatment, uma solugdao de backend
projetada para aprimorar a comunicagao com pacientes em acompanhamento remoto.
Para alcancar esse objetivo, foram delineados os seguintes objetivos especificos: (i)
projetar uma arquitetura de software escalavel, confiavel e modular utilizando
principios de microsservigos; (ii) implementar funcionalidades de agendamento em
massa e envio multicanal (e-mail e WhatsApp) para mensagens personalizadas; e (iii)
demonstrar a viabilidade técnica e as contribui¢des do sistema para o campo da saude
digital por meio de um prototipo funcional.

O desenvolvimento do Remote Treatment adotou uma abordagem de engenharia
de software tecnologica, com énfase em uma arquitetura de microsservicos e
processamento assincrono para garantir alta disponibilidade e escalabilidade. As
tecnologias principais incluiram o framework Django para o desenvolvimento do backend
e da API REST, o Celery para gerenciamento e execucao assincrona de tarefas de envio
de mensagens, € o Docker Compose para conteinerizacao e orquestragdo do ambiente de
desenvolvimento e producdo [Oliveira 2022] [Mota 2018]. Ao propor essa solugdo
inovadora, espera-se contribuir significativamente para o avanco da telemedicina,
oferecendo uma ferramenta pratica que ndo apenas automatize processos criticos de
comunica¢do, mas também promova maior equidade no acesso a cuidados de satde
remotos, com especial relevancia para contextos como o Sistema Unico de Saade (SUS)
no Brasil, visto que a otimizag@o de recursos e a abrangéncia de atendimento sdo cruciais.

Para tanto, o artigo estd organizado da seguinte maneira: a se¢do subsequente
delineia a fundamentacdo tedrica e a revisdo da literatura pertinente ao tema; em
seguida, apresenta-se o desenho metodologico detalhado e a implementacao técnica do
sistema Remote Treatment; a anélise de resultados e as discussdes sobre as implicagdes
do sistema sdo abordadas na sequéncia; e, por fim, conclui-se com as principais
descobertas, limitagcdes do estudo e sugestdes para pesquisas futuras.

2. Fundamentacao Tedrica

A presente secdo delineia os alicerces conceituais indispensaveis para a compreensao e
contextualizagdo do sistema Remote Treatment. Ao explorar a relevancia dos sistemas de
agendamento e comunicagdo com assistidos, bem como os principios da arquitetura
assincrona em aplicagdes de gestdo de servigos, busca-se estabelecer uma base tedrica
robusta que justifique a necessidade e a inovacao do proposto. Essa fundamentag¢do nao

apenas ancora o desenvolvimento técnico no estado da arte da literatura, mas também
destaca as implicagdes praticas para a otimizagao do acompanhamento remoto em satde,
promovendo uma abordagem integrada e interdiscilinar entre tecnologia, gestdo e
cuidados assistenciais. Em um cenario de crescente digitalizacdo da satde, onde a
eficiéncia operacional e a experiéncia do paciente sdo cruciais, compreender esses pilares
¢ fundamental para abordar os desafios contemporaneos e as oportunidades de
transformagao.

2.1. Sistemas de Agendamento e Comunica¢cio com Assistidos

Os sistemas de agendamento e comunicagdo representam elementos fundamentais na
gestdo de servigos remotos, transcendendo a simples organizagdao logistica para se
configurarem como mecanismos essenciais na promog¢ao da adesdo ao tratamento e na
continuidade do cuidado em satde. Segundo a Minha Agenda Virtual (2025), a auséncia
de comunicagdo proativa ndo so eleva os custos operacionais associados ao absenteismo
(conhecido como "no-show"), que pode chegar a taxas significativas e gerar perdas
financeiras e de recursos humanos, mas também compromete a eficacia clinica dos
programas terapé€uticos, podendo resultar em desfechos adversos para os assistidos. Nesse
contexto, a literatura enfatiza a importancia de estratégias que mitiguem tais riscos,
destacando que falhas na comunicagdo podem exacerbar desigualdades no acesso a
cuidados, especialmente em populagdes vulneraveis ou com barreiras de mobilidade
[Postal et al. 2021].

Um aspecto central reside na personaliza¢do da comunicacao, identificada como
fator pivotal para o engajamento dos assistidos. Mensagens genéricas frequentemente sao
desconsideradas, ao passo que aquelas adaptadas a dados especificos — como datas de
procedimentos, dosagens medicamentosas, instrugdes pré-consulta ou resultados de
exames — fomentam uma percepcdo de atendimento individualizado, fortalecendo o
vinculo terapéutico e a confianca. Essa personalizacdo ¢ tipicamente alcancada através da
segmentacdo de pacientes e do uso de dados clinicos e demograficos para adaptar o
conteudo, o tom e a frequéncia das mensagens. Ademais, a adogdo de canais multimodais,
incluindo e-mail, WhatsApp e SMS, atende a diversidade de preferéncias e niveis de
acessibilidade tecnologica dos assistidos, garantindo a dissemina¢do eficaz de
informacdes [Santos 2024]. Essa multimodalidade ndo ¢ meramente técnica, mas
estratégica, pois reconhece e busca superar barreiras socioeconOmicas e digitais,
alinhando-se a principios de equidade em saude publica e oferecendo mecanismos de
fallback caso um canal preferencial ndo seja viavel ou acessivel.

O conceito de Comunicacao Proativa emerge como eixo central dessa discussao,
diferenciando-se da comunicacdo reativa — que responde a demandas iniciais dos
assistidos — por antecipar necessidades e intervir em momentos oportunos do ciclo de
tratamento. Essa abordagem transforma os sistemas de agendamento em ferramentas de
Gestdo de Relacionamento com o Paciente (PRM, do inglés Patient Relationship
Management), promovendo engajamento continuo através de lembretes de consultas,
mensagens educativas sobre condigdes de saude, instrugdes de preparo para
procedimentos, lembretes de medicacdo e mensagens motivacionais, e,
consequentemente, reduzindo o risco de abandono em programas de longo prazo
[Marinho 2024]. Em cenarios de tratamento remoto, onde o contato fisico ¢ limitado, essa
proatividade assume relevancia ainda maior, atuando como ponte virtual essencial entre
profissionais de saude e assistidos, capacitando-os para a autogestdo de sua saude.

Nesse panorama, o uso de canais acessiveis como e-mail e WhatsApp para o envio
automatizado de lembretes e mensagens de acompanhamento consolida-se como pratica
estabelecida na gestdo de servigos remotos [Santos 2024]. A automagdo, ao assegurar a
entrega oportuna e precisa de informagdes, eleva o sistema de um mero agendador para
uma plataforma integrada de gestdo de adesdo [Marinho 2024]. O Remote Treatment
insere-se precisamente nesse contexto, oferecendo uma solucao tecnologica inovadora
para o agendamento em massa e envio multicanal de mensagens, com o intuito de otimizar
o acompanhamento de assistidos em programas de tratamento remoto. Ao abordar lacunas
como a sobrecarga manual, a inconsisténcia na comunicacao e a ineficiéncia escalavel, o
sistema contribui para uma saude digital mais inclusiva e eficaz, alinhando-se a diretrizes
éticas de privacidade de dados (ex.: conformidade com a LGPD no Brasil, exigindo
consentimento explicito e seguranga na transmissao de dados sensiveis) e sustentabilidade
operacional. A implementagdo de feedback loops e a possibilidade de 4/B testing em
mensagens podem refinar continuamente a eficacia das estratégias de comunicacao.

A natureza sensivel dos dados de satide exige um rigoroso compromisso com a
privacidade e a seguranca, em conformidade com a Lei Geral de Prote¢cdo de Dados
(LGPD) no Brasil. O sistema Remote Treatment foi projetado com o principio de privacy
by design, implementando medidas técnicas e organizacionais robustas. A seguranga dos
dados pessoais dos assistidos ¢ garantida por meio da criptografia de dados em repouso
no banco de dados, assegurando que, mesmo em caso de acesso ndo autorizado a
infraestrutura, as informagdes permanecam ilegiveis. Adicionalmente, o controle de
acesso ¢ estritamente limitado, permitindo que apenas usuarios administradores
devidamente autenticados e autorizados possam visualizar e gerenciar os dados,
minimizando o risco de exposi¢@o e uso indevido. Tais medidas ndo apenas cumprem as
exigéncias legais da LGPD, mas também fortalecem a confianc¢a dos usuarios no sistema
de satde digital.

2.2. Arquitetura Assincrona com Django e Celery

O desenvolvimento de aplicagdes web robustas, particularmente aquelas que
gerenciam tarefas intensivas como o envio de mensagens em massa por meio de e-mail
ou WhatsApp, o processamento de volumes elevados de dados ou a integracdo com APIs
externas de alta laténcia, demanda uma arquitetura que priorize o processamento
assincrono para garantir eficiéncia, responsividade e escalabilidade [Oliveira 2022]. O
processamento sincrono, no qual a aplicacdo aguarda a conclusdo de cada operagdo antes
de prosseguir, pode levar a bloqueios, timeouts € uma experiéncia de usuario degradada,
especialmente sob carga. Nesse sentido, a escolha do framework Django para o
desenvolvimento do backend e da API REST foi motivada por sua segurancga inerente, seu
ORM robusto (Object-Relational Mapper) que acelera a interagdo com o banco de dados,
e arapidez de desenvolvimento que ele proporciona, permitindo a entrega de um prototipo
funcional em tempo habil.

A integracdo com o Celery para o gerenciamento de filas de tarefas foi essencial
para permitir a delegacdo de operagdes demoradas sem comprometer a responsividade do
sistema [Mota 2018]. O Celery foi escolhido devido a sua facilidade de integracdo com o
ecossistema Django, sua capacidade de oferecer escalabilidade horizontal para lidar com
picos de demanda de envio de mensagens, e seus recursos de retry (tentativa de

reexecucdo) configurdveis, que aumentam a resiliéncia do sistema a falhas temporarias
de rede ou servigo.

Embora seja uma escolha técnica de backend, a arquitetura assincrona exerce
impacto direto e significativo na experiéncia dos assistidos em contextos de saude. Por
exemplo, a capacidade de processar e enviar mensagens em horarios precisos — facilitada
pelo Celery Beat — previne atrasos criticos, assegurando que lembretes de medicagao,
consultas ou resultados de exames sejam entregues pontualmente, o que ¢ vital para a
adesdo terapéutica e a seguranca do paciente. Adicionalmente, essa estrutura suporta
picos de demanda, como em campanhas de satde publica ou agendamentos em massa
para vacinagdo, evitando colapsos sist€émicos e mantendo a confiabilidade da
comunicagdo [Alfard 2024]. A resposta imediata da interface do usuario ap6s uma agao
(e.g., agendamento de uma campanha de mensagens) ¢ um beneficio direto, pois o usudrio
ndo precisa esperar a conclusio de todas as operagdes de envio.

O Celery opera como um sistema distribuido de filas de tarefas, permitindo que a
aplicagdo principal (servidor web Django) delegue operagdes de I/O-bound — como
integracdes com servicos externos de envio de mensagens — a workers dedicados. Isso
libera o servidor para lidar com novas requisi¢des, reduzindo laténcia, aumentando o
throughput e aprimorando a escalabilidade [Alfard 2024]. Recursos como task retries,
rate limiting e time limits configuraveis no Celery contribuem para a robustez do sistema,
lidando com falhas temporérias de rede ou sobrecarga de servigos externos. O Redis,
empregado como broker de mensagens e backend de resultados, gerencia a fila entre
Django e Celery, rastreando o status das tarefas e conferindo resiliéncia ao ecossistema.
Por ser um in-memory data store de alta performance, o Redis ¢ ideal para essa funcao,
além de poder ser utilizado para caching de outras partes da aplicagdo. Essa combinagao
— Django para logica de negocios e APl REST, Celery para agendamento e execucdo
assincrona, e Redis para intermediagdo — configura um padrdo arquitetural moderno,
particularmente adequado para demandas de comunicacdo em massa, como as do Remote
Treatment [Paiva 2018]. A seguranca do broker ¢ crucial, exigindo autenticacdo,
autorizagdo e, idealmente, isolamento de rede para proteger a fila de mensagens.
Ferramentas como Flower podem ser integradas para monitorar as tarefas do Celery em
tempo real, fornecendo insights operacionais e facilitando a depuracao.

Essa escolha reflete a aplicagdo do Padrdao de Filas de Tarefas (7ask Queue
Pattern), indispensavel para sistemas que lidam com operagdes de longa duragdo ou alta
laténcia, incluindo envios de e-mails e integragdes com APIs externas [Oliveira 2022].
Ao adotar essa abordagem, o Remote Treatment nao apenas otimiza o desempenho
técnico, mas também contribui para uma gestdo de satide mais 4gil, minimizando riscos
de falhas que poderiam afetar o bem-estar dos assistidos e garantindo a entrega
consistente de informagdes criticas.

2.2.1. Principios do Processamento Assincrono

O processamento assincrono ¢ ancorado em principios fundamentais que garantem sua
eficadcia em ambientes de alta demanda, promovendo um design de sistema mais robusto
e eficiente:

1. Desacoplamento: A aplicacdo principal (Django) e o servico de execucdo de
tarefas (Celery Worker) funcionam de maneira independente. O Django enfileira
a tarefa no broker (Redis) e retorna imediatamente a resposta ao usuario, evitando

o bloqueio do thread principal do servidor web. Essa separagdo ndo s6 promove
eficiéncia e previne gargalos em cendrios de uso intensivo, mas também permite
o desenvolvimento e deployment independente dos componentes, facilitando a
manutencao ¢ a evolugao do sistema.

2. Resiliéncia: O broker serve como ponto de persisténcia temporaria, assegurando
que tarefas nao sejam perdidas em caso de falhas ou reinicializagdes do worker.
Além disso, mecanismos de retry configuraveis permitem que tarefas falhas sejam
automaticamente reexecutadas apos um periodo, aumentando a tolerancia a falhas
temporarias. Essa caracteristica confere ao sistema uma robustez superior ao
processamento sincrono, permitindo recuperagdo automatica ¢ manutengao da
integridade operacional, o que ¢ vital para mensagens criticas de saude.

3. Escalabilidade: A arquitetura assincrona facilita a escalabilidade horizontal. E
possivel adicionar mais workers Celery conforme a demanda cresce, distribuindo
a carga de trabalho e processando um volume maior de tarefas simultaneamente,
sem a necessidade de re-arquitetar a aplicacdo principal. Isso garante que o
sistema possa lidar com picos de trafego e expansao de funcionalidades de forma
eficiente e econdmica.

Esses principios nao so sustentam a viabilidade técnica do Remote Treatment, mas
também alinham-se a consideragdes éticas, como a garantia de continuidade no envio de
mensagens criticas para saude, mesmo em condigdes adversas de rede ou carga, e a
capacidade de servir um numero crescente de assistidos de forma equitativa.

2.3. Trabalhos Relacionados

A andlise de trabalhos correlatos € essencial para situar o Remote Treatment no panorama
cientifico atual, identificando contribui¢des existentes e lacunas que o presente estudo
busca preencher. Trés estudos notaveis delineiam o contexto relevante:

O primeiro, intitulado "Sistema de Agendamento Online para APS" [Postal et al.
2021], visa facilitar o acesso a Atencao Primdria a Satde (APS) no Brasil por meio da
integragdo com o PEC e-SUS APS, otimizando o fluxo de pacientes em sistemas
governamentais. Sua principal contribuicdo reside na promocdo de acessibilidade e
integragdo institucional, porém seu foco € primariamente logistico e de gestao de filas de
agendamento, sem uma énfase robusta na comunicagdo proativa e personalizada em
massa para adesdo a tratamentos. O segundo, "Ferramenta Digital para Agendamento
Médico" [Dantas 2016], concentra-se no agendamento de consultas especializadas no
SUS, enfatizando transparéncia e monitoramento de filas de espera, com foco na
experiéncia do paciente. Similarmente, este trabalho aborda a etapa inicial do
agendamento, mas nao se aprofunda na continuidade do cuidado através de estratégias de
comunicag¢do automatizada pds-agendamento. Por fim, o "Sistema de Telemonitoramento
para Pacientes com ELA" ilustra a aplicagdo de Django em telemonitoramento remoto
para pacientes com Esclerose Lateral Amiotréfica (ELA), destacando funcionalidades de
monitoramento continuo de parametros clinicos [Valentini 2021]. Embora utilize Django
para telemonitoramento, seu escopo ¢ o acompanhamento individualizado e a coleta de
dados de satide, e ndo a gestdo de campanhas de comunica¢gdo em massa ou a otimizagao
da adesao via mensagens proativas.

O Remote Treatment diferencia-se desses trabalhos ao enfatizar o agendamento
em massa de mensagens assincronas para programas de acompanhamento remoto,
empregando uma arquitetura escalavel baseada em Django, Celery e Docker. Enquanto
[Postal et al. 2021] e [Dantas 2016] priorizam agendamento logistico e gestao de filas, e
[Valentini 2021] foca em telemonitoramento, o presente sistema aborda a lacuna de
comunicag¢do proativa automatizada, crucial para adesdo em tratamentos de longo prazo
e para a gestdo eficiente de grandes populacdes de assistidos. A énfase na arquitetura
assincrona, nao explorada com igual profundidade e foco em comunicagao em massa nos
estudos citados, garante escalabilidade e confiabilidade para volumes elevados de
mensagens, representando uma inovagao técnica e aplicada. A flexibilidade da arquitetura
do Remote Treatment também permite sua aplicagdo em diversos contextos de saude,
preenchendo uma lacuna de solugdes genéricas e escalaveis para comunicagao proativa.

3. Métodos e Técnicas

O desenvolvimento do sistema Remote Treatment seguiu uma abordagem de Engenharia
de Software Tecnologica, focada na criagdo de uma solugdo robusta e escalavel. Para a
gestdo do processo de desenvolvimento, foi adotada a metodologia Kanban, um
framework agil que prioriza o fluxo continuo de trabalho e a visualizagdo clara das etapas.
O Kanban permitiu que a equipe mantivesse o foco na entrega de valor, gerenciando o
desenvolvimento de forma flexivel e adaptativa as necessidades emergentes do projeto.
A visualizacdo do fluxo de trabalho (70 Do, Doing, Done) garantiu a transparéncia ¢ a
identificacdo rapida de gargalos, otimizando o tempo de ciclo e a eficiéncia da
implementagao.

A andlise do desenvolvimento conduzida sob o prisma do Kanban demonstrou a
eficacia da metodologia para um projeto de escopo bem definido como o Remote
Treatment. O uso de um sistema pull (puxar tarefas apenas quando a capacidade permite)
evitou a sobrecarga da equipe e garantiu a qualidade do codigo em cada etapa. Essa
abordagem agil foi fundamental para a rapida iteragao e validag@o do protdtipo funcional,
permitindo que a implementacdo técnica fosse realizada de forma incremental e com alta
previsibilidade.

3.1 Arquitetura do Sistema

A arquitetura do Remote Treatment fundamenta-se em um modelo de servigos
desacoplados, inspirado nos principios de microsservigos, com orquestragao realizada por
meio do Docker Compose. Essa estrutura promove a independéncia de componentes,
permitindo que cada moddulo seja desenvolvido, testado, implantado e escalado
autonomamente, o que ¢ particularmente vantajoso em cenarios de alta demanda variavel,
como o envio massivo de mensagens em programas de tratamento remoto. O
desacoplamento inerente aos microsservigos assegura que falhas em um componente nao
comprometam a totalidade do sistema, elevando a resiliéncia. O Docker Compose, ao
simplificar a gestdo de ambientes multi-contéiner, assegura paridade entre fases de
desenvolvimento, teste e producao, reduzindo discrepancias ambientais e facilitando a
escalabilidade horizontal — por exemplo, replicando instancias de workers para lidar com
picos de carga sem comprometer a performance global.

Os cinco componentes principais da arquitetura sdo delineados a seguir, com énfase em
suas interacdes e contribui¢des para a eficiéncia sistémica:

Web/API (Django e Django REST Framework): Este componente central
gerencia as interfaces de programagao de aplicagdes (APIs) RESTful, responsaveis
pelo cadastro de assistidos, agendamento de mensagens e consultas
administrativas. Sua implementa¢do em Django garante uma camada de abstragao
robusta para operacdes CRUD (Create, Read, Update, Delete), promovendo
seguranca e eficiéncia na manipulagdo de dados sensiveis, como informagdes de
pacientes. O Django REST Framework (DRF) oferece recursos como autenticacao
baseada em fokens (e.g., JWT), autorizacao granular, serializacdo de dados e
valida¢do de entrada, essenciais para construir APIs seguras e performaticas. A
utilizacao de um ORM (Object-Relational Mapping) como o do Django simplifica
a interagdo com o banco de dados e ajuda a prevenir vulnerabilidades comuns
como SQL Injection.

Banco de Dados (PostgreSQL): Utilizado para armazenamento persistente, o
PostgreSQL oferece suporte a transacdes ACID (Atomicidade, Consisténcia,
Isolamento, Durabilidade), essencial para manter a integridade de dados em um
sistema que lida com agendamentos criticos. Isso inclui o registro de historicos de
envios, evitando perdas em cenarios de falha. Suas capacidades avangadas, como
tipos de dados JSONB, permitem flexibilidade para armazenar metadados
adicionais de forma semi-estruturada, enquanto recursos como replicagdo e
backups point-in-time garantem alta disponibilidade e recuperacdo de desastres,
cruciais para a continuidade de servigos de saude. Estratégias de indexa¢do bem
planejadas sdo empregadas para otimizar o desempenho de consultas em tabelas
grandes, como as de ScheduledMessage € Messagelog.

Broker/Cache (Redis): Atuando como intermediario de mensagens e cache, o
Redis otimiza o desempenho ao armazenar filas de tarefas e dados temporarios,
reduzindo laténcias em consultas frequentes. Sua natureza in-memory facilita o
processamento rapido, crucial para aplicagdes assincronas. Além de ser um
message broker para o Celery, o Redis pode ser utilizado para cache de dados
frequentemente acessados (e.g., configuracdes de templates), contadores de taxa
(rate limiting) para APIs, ou mesmo para gerenciar sessdes de usudrios,
aumentando a responsividade geral do sistema. A persisténcia configuravel do
Redis (RDB e AOF) garante que as filas de tarefas ndo sejam perdidas em caso de
reinicio do servigo.

Worker (Celery): Dedicado a execucao de tarefas assincronas, como o envio de
e-mails, o Celery Worker desacopla operacdes de I/O intensivas da aplicagao
principal, prevenindo bloqueios e melhorando a responsividade da API. Isso ¢
vital para manter a usabilidade em ambientes de saude, onde atrasos podem
impactar a adesdo ao tratamento. O Celery ¢ configurado com mecanismos de re-
tentativa (retries) com backoff exponencial, garantindo que tarefas falhas devido
a problemas transitérios (e.g., indisponibilidade temporaria de um servidor
SMTP) sejam automaticamente reprocessadas, elevando a confiabilidade do
sistema. A capacidade de escalar o nimero de workers dinamicamente permite
que o sistema se adapte a variagdes na carga de trabalho.

Beat (Celery Beat): Responsavel por agendamentos recorrentes, como
verificagdes periodicas de mensagens pendentes, o Celery Beat assegura a
temporalidade precisa das tarefas, alinhando-se com requisitos de precisdo em

comunicagdes programadas. Diferente do Celery Worker que executa tarefas sob
demanda, o Celery Beat atua como um scheduler, disparando tarefas em intervalos
definidos (similar a um cron job), garantindo que as mensagens sejam processadas
no momento exato em que seu scheduled time ¢ atingido ou ultrapassado. Isso ¢
fundamental para a pontualidade de lembretes e instru¢des de tratamento.

O fluxo operacional exemplifica a coesdao da arquitetura: ao receber uma
requisi¢do de agendamento (individual ou em massa) via API, o Django serializa a tarefa
e a encaminha ao Redis como broker. O Celery Worker, monitorando a fila, executa o
envio em segundo plano, evitando interrupgdes na resposta da API. Em caso de falha no
envio, o Celery pode ser configurado para re-tentar a tarefa, e o status ¢ atualizado no
MessageLog. Essa configuracdo mitiga riscos de sobrecarga, como operacdes de 1/O
demoradas (ex.: integragdes com servidores SMTP), e promove uma experiéncia de
usuario fluida, com implicagdes positivas para a escalabilidade em contextos de satde
digital de grande porte.

Backend (Docker Compaose)

‘WabAPI [DjangsSAF) Colary Bet | Scheduler) Calary Merkar (Escutor] Rada (BrokerTache] PauigrSQL (06} Feomband (Pasctjs]

Clery_Besl Wb

Caleay_ Worker

Twwitin AP {Whatslpp) SHTP Swrver [£.mail] Perigrasql

Figura 1 Diagrama de Arquitetura do Sistema Remote Treatment. Descri¢céo: A figura
deve ilustrar os componentes principais (Django API, Celery Worker, Redis Broker,
Banco de Dados) e o fluxo de comunicagado assincrona.

3.2 Tecnologias de Implementacao

A selecao de tecnologias foi orientada por critérios de maturidade, produtividade e
adequagdo ao processamento assincrono, priorizando solugdes de cddigo aberto para
fomentar acessibilidade e comunidade de suporte. Cada escolha ¢ justificada por sua
capacidade de enderecar desafios especificos, como laténcia e confiabilidade, enquanto
se alinha com boas praticas de engenharia de software sustentdvel e segura.

e Backend (Python/Django): O Python, combinado ao framework Django, foi
eleito por sua maturidade e ecossistema rico, permitindo o desenvolvimento
rapido de APIs RESTful via Django REST Framework. A abordagem "batteries-
included" do Django fornece ferramentas integradas, como ORM (Object-

Relational Mapping), sistemas de autenticagdo e autorizagcdo robustos, € um
framework de testes abrangente, que aceleram o ciclo de desenvolvimento e
reforcam a seguranca — aspectos cruciais em aplicagdes que manipulam dados
de saude sensiveis. Sua legibilidade e vasta comunidade facilitam a manutencao
¢ a colaboragao.

e Processamento Assincrono (Celery): Como nucleo do agendamento, o Celery,
configurado com Redis como broker, gerencia filas de tarefas e utiliza o Celery
Beat para execugdes periodicas. Essa integracdo garante que tarefas como
verificagdes de scheduled time sejam executadas de forma confidvel, com suporte
a re-tentativas automaticas em falhas e persisténcia de mensagens na fila,
elevando a resiliéncia do sistema. Em contextos de satide, isso minimiza riscos de
ndo-entrega de mensagens criticas, contribuindo para melhores taxas de adesdo ao
tratamento e garantindo a entrega de informagdes vitais, mesmo sob condi¢des de
rede ou servico externo instaveis.

e Comunicac¢do Externa (SMTP): O protocolo SMTP, integrado ao backend de e-
mail nativo do Django, habilita envios multicanal de forma padronizada. Sua
adocdo permite flexibilidade, como personalizagdo de contetidos via templates
dindmicos, ¢ ¢ complementada por mecanismos de logging detalhados para
auditoria e rastreamento de entregas/falhas, atendendo a requisitos regulatorios de
privacidade e conformidade (e.g., HIPAA, LGPD) ao registrar o que foi enviado,
para quem e quando. A comunicagdo SMTP ¢ protegida via TLS/SSL para garantir
a confidencialidade dos dados em transito.

o Conteinerizacio (Docker): O Docker, aliado ao Docker Compose, isola servigos
em contéineres padronizados, eliminando inconsisténcias de dependéncias entre
ambientes de desenvolvimento, teste e produgdo e facilitando implantacdes. Essa
tecnologia promove portabilidade e escalabilidade, permitindo que o sistema seja
adaptado a ambientes cloud (e.g., AWS ECS, Kubernetes) ou on-premise, com
beneficios em termos de custo e eficiéncia operacional. A utilizacdo de multi-stage
builds otimiza o tamanho das imagens, reduzindo a superficie de ataque e
acelerando o deploy.

Essas tecnologias, em conjunto, formam um ecossistema coeso que equilibra
performance e simplicidade, com implicagdes para futuras expansdes, como integrac¢ao
de novos canais de comunicagao (e.g., SMS, WhatsApp através de APIs de terceiros) ou
a incorporagdo de servigos de inteligéncia artificial para personalizacdo avangada de
mensagens.

3.3 Modelagem de Dados (Visdo Geral)

A modelagem de dados adota uma abordagem relacional centrada em entidades que
espelham os processos de gestdo de pacientes e comunicagdes, garantindo integridade,
rastreabilidade e conformidade com padrdes de dados em saude. Os modelos principais,
implementados via ORM do Django, sdo projetados para suportar consultas eficientes e
escalaveis, com campos otimizados para cenarios de agendamento em massa. Essa
estrutura ndo apenas facilita a persisténcia de dados, mas também apoia andlises
posteriores, como métricas de adesdo ao tratamento e avaliacdo da eficicia das
comunicagdes. A normalizagdo ¢ aplicada para minimizar redundancias, enquanto indices
estratégicos sao criados para otimizar o desempenho de SELECT e UPDATE em campos
criticos.

e Registration: Modelo customizado para usuarios/pacientes, armazenando dados
de contato (e-mail, telefone) e atributos de elegibilidade (ex.:
interested_in_surgery, surgery date). Inclui campos para gerenciamento de
consentimento (opt_in _email, opt in whatsapp) e timestamps de
criagdo/atualizagdo para auditoria. Serve como base para segmentacao precisa em
campanhas, promovendo personalizagdo e eficiéncia, enquanto garante a
privacidade das informagdes pessoais identificaveis (PII) através de controle de
acesso e, quando aplicavel, criptografia em repouso.

e ScheduledMessage: Nucleo do agendamento, registra detalhes como destinatario
(Foreign Key para Registration), template (Foreign Key para MessageTemplate),
canal (email, whatsapp), scheduled_time e o status atual (scheduled, sent, failed,
retrying). Atua como piv0 para tarefas assincronas, com indices otimizados em
scheduled time e status para consultas rapidas pelo Celery Beat.

e MessageTemplate: Facilita reutilizacdo de conteudos, com campos para subject e
body (que podem conter placeholders para personalizacdo dinamica, e.g.,
{{patient_name}}). Permite customizagdes dindmicas e reduz redundancias,
garantindo consisténcia na comunicacdo ¢ agilidade na criagdo de novas
campanhas.

e MessageLog: Mantém historico detalhado de cada tentativa de envio, incluindo
timestamp, status (e.g., success, failure), response_code e response_message do
provedor de e-mail. Essencial para auditoria, depuragdo de problemas de entrega
e conformidade regulatoria, fornecendo um registro imutavel das interagdes.

o AuditLog: Registra acdes administrativas e alteracdes significativas no sistema
(e.g., criagdo de usudrio, modificacdo de MessageTemplate), incluindo user (quem
realizou a acdo), action (o que foi feito), timestamp e details (conteudo da
alteracdo). Garante conformidade e seguranca em ambientes regulados,
fornecendo um rastro completo de atividades para fins de seguranga e
responsabilidade.

Essa modelagem reflete principios de normaliza¢do, minimizando redundancias e
maximizando queries performaticas, com implica¢des para a privacidade e a andlise de
dados em pesquisas subsequentes. A seguranca dos dados ¢ uma prioridade, com a
implementa¢do de controles de acesso baseados em fun¢des (RBAC) e a consideragdo de
criptografia para dados sensiveis, tanto em transito (TLS) quanto em repouso.

3.4 Interface do Usuario (Frontend)

O frontend, desenvolvido em React e integrado a APl REST do Django, adota uma
abordagem responsiva e segmentada por perfis, priorizando usabilidade e acessibilidade.
Essa camada complementa o backend, transformando o sistema em uma solucao end-to-
end, com foco em interagdes intuitivas que reduzem barreiras para usuarios nao técnicos,
como administradores de satde e pacientes. A arquitetura baseada em componentes do
React facilita o desenvolvimento modular e a manutengao, enquanto o uso de bibliotecas
de gerenciamento de estado (e.g., Redux ou Context API) garante uma experiéncia de
usuario consistente e performatica.

e Para Administradores: Um dashboard autenticado permite gerenciamento de
pacientes, templates e agendamentos em massa, com visualizagdes interativas
para monitoramento do status das mensagens e métricas de engajamento. A

interface oferece formularios intuitivos para a criagdo e edicdo de
MessageTlemplates, bem como ferramentas para importar listas de pacientes em
massa, otimizando o fluxo de trabalho dos gestores de tratamento. A seguranca ¢é
garantida por tokens de autenticacao (e.g., JWT) e validagdo de permissdes no
lado do servidor.

o Para Pacientes: Rotas publicas facilitam o cadastro inicial, a confirmacgdo de
dados e a gestdo de preferéncias de comunicagdo (opt-in/opt-out), promovendo
engajamento e consentimento informado. A interface ¢ projetada para ser acessivel
em diversos dispositivos (desktops, tablets, smartphones) através de design
responsivo (utilizando CSS Grid e Flexbox), garantindo que pacientes com
diferentes niveis de literacia digital possam interagir com o sistema sem
dificuldades.

Essa interface reforca a aplicabilidade pratica do sistema, com potencial para
integracdes futuras, como notificagdes em tempo real via WebSockets, dashboards
personalizados para pacientes com informagdes de progresso no tratamento, ou a
incorporagdo de ferramentas de teleconsulta, elevando sua relevancia em contextos de
telemedicina e saude digital. A performance do frontend é otimizada através de técnicas
como lazy loading de componentes e code splitting, garantindo carregamento rapido e
uma experiéncia fluida.

4. O Sistema "Remote Treatment"

O Remote Treatment representa uma inovacdo em sistemas de agendamento de
mensagens assincronas, projetado para automatizar comunicagdes proativas em
tratamentos remotos, com o intuito de otimizar o acompanhamento de pacientes e mitigar
absenteismo. Essa solucdo de backend destaca-se pela integracdo de processamento
assincrono, que equilibra eficiéncia operacional com confiabilidade, enderecando lacunas
em ferramentas tradicionais de satde digital que frequentemente carecem de
escalabilidade e resiliéncia para lidar com grandes volumes de comunicagdo. Ao focar em
automacdo e escalabilidade, o sistema contribui para uma gestdo mais eficaz de
programas de longo prazo, com implica¢des para a reducdo de custos operacionais € a
melhoria de resultados clinicos através de uma adesdo mais consistente ao tratamento. A
seguir, exploram-se suas funcionalidades principais e a implementa¢ao do agendamento
assincrono, com énfase em fluxos operacionais € mecanismos de robustez.

4.1 Funcionalidades Principais

O sistema oferece um repertorio de funcionalidades integradas, projetadas para suportar
a gestdo holistica de comunicacdes em saude, com énfase em automacgdo e
personalizacdo. Cada funcionalidade ¢ justificada por sua contribui¢do a adesdao ao
tratamento, a eficiéncia administrativa e a conformidade com as melhores praticas de
comunicac¢ao em saude.

o Gestao de Pacientes: Facilita o cadastro e atualizacdo de dados demograficos e
clinicos dos pacientes, incluindo critérios de elegibilidade para campanhas (e.g.,
surgery date, treatment phase). Isso permite segmentagdes precisas para
comunicagdes direcionadas, reduzindo esfor¢os manuais e aumentando a
relevancia das mensagens. A funcionalidade inclui validagdo de dados e
mecanismos para garantir a integridade e a privacidade das informagdes do
paciente.

o Agendamento Individual de Mensagens: Permite programagdes personalizadas
por paciente, com selecdo de canais (e-mail, com potencial para WhatsApp via
integracdes futuras) e escolha de MessageTemplates especificos. Garante
comunicagdes oportunas e relevantes, como lembretes de medicagdo ou instrugdes
pré-operatorias, que sdo cruciais para a seguranca ¢ eficacia do tratamento. A
interface de agendamento considera fusos horarios para garantir a entrega no
momento apropriado para cada paciente.

e Agendamento em Massa: Via endpoint APl dedicado (POST
/api/treatments/bulk _schedule/), identifica e agenda mensagens para grupos de
pacientes baseados em critérios dinamicos (ex.: pacientes com surgery date na
proxima semana, ou interested in surgery=True). Essa funcionalidade escala
para volumes elevados sem perda de performance, permitindo que grandes
campanhas de saude publica ou programas de acompanhamento sejam
gerenciados de forma eficiente. O processamento ¢ otimizado para evitar
sobrecarga do banco de dados e do broker.

e Envio Multicanal: Suporte nativo a e-mail via SMTP, com flexibilidade para
expansdes futuras para outros canais como SMS e WhatsApp (via APIs de
provedores de terceiros). Essa abordagem garante alcance amplo em populacdes
diversificadas, adaptando-se as preferéncias de comunicagdo dos pacientes e
maximizando as chances de que a mensagem seja recebida e lida. Uma interface
de comunicacdo genérica pode ser implementada para abstrair os detalhes
especificos de cada canal.

e Processamento Assincrono: Integrado ao Celery, isola tarefas demoradas (como
o envio de e-mails ou a comunicagdo com APIs externas) do fluxo principal da
aplicacdo. Isso preserva a responsividade da interface do usuario e da API,
permitindo que o sistema continue processando novas requisicdes enquanto as
tarefas em segundo plano sdo executadas. O monitoramento em tempo real das
filas e workers do Celery permite identificar e resolver gargalos rapidamente.

Essas funcionalidades posicionam o Remote Treatment como uma ferramenta versatil,
com potencial para integragdo em ecossistemas de saide maiores, como plataformas de
telemonitoramento, prontudrios eletronicos (EHRs) ou sistemas de gestdo hospitalar,
atuando como um motor de comunicacao proativa.

4.2 Implementaciao do Agendamento Assincrono

O cerne do Remote Treatment reside na implementa¢do de agendamento e execugdo
assincrona, ancorada na sinergia entre Django e Celery. Essa abordagem mitiga
limitagcdes de sistemas sincronos, como bloqueios de thread e laténcias prolongadas,
promovendo uma operagao eficiente em cenarios de alta carga e garantindo que as
comunicagdes criticas sejam entregues no tempo certo. A integragao facilita o manejo de
comunicagdes em massa, com mecanismos de recuperacdo de falhas que elevam a
confiabilidade global do sistema.

4.2.1 Fluxo de Agendamento

O fluxo segue uma sequéncia estruturada e otimizada, garantindo precisao temporal e
rastreabilidade completa de cada mensagem:

1. Criacdo da Mensagem: Um objeto ScheduledMessage ¢ persistido no banco de
dados PostgreSQL, capturando o recipient (Foreign Key para Registration), o
message_template (Foreign Key para MessageTemplate), o channel (e.g., 'email'),
o scheduled time (data e hora exatas para envio) e um status inicial (scheduled).
Este registro serve como uma fonte de verdade imutdvel para a tarefa de
comunicacgao.

2. Monitoramento (Celery Beat): O Celery Beat, configurado para executar em
intervalos regulares (e.g., a cada minuto), consulta o banco de dados em busca de
mensagens pendentes. A query ¢ otimizada para identificar eficientemente
entradas na tabela ScheduledMessage onde o scheduled time ¢ menor ou igual ao
tempo atual e o status ainda ¢ scheduled.

3. Identificacdo e Preparacio de Mensagens: As mensagens identificadas sdo
agrupadas e preparadas para despacho. Para otimizar o desempenho em volumes
elevados, a consulta pode utilizar indices compostos em scheduled_time e status
para minimizar o tempo de busca.

4.3 Analise do Processo de Desenvolvimento

A viabilidade técnica do sistema Remote Treatment foi ndo apenas demonstrada pelo
protétipo funcional, mas também validada pela eficiéncia do processo de
desenvolvimento. A ado¢@o da metodologia Kanban permitiu uma gestao de projeto agil
e transparente, resultando em um ciclo de desenvolvimento otimizado. A analise do fluxo
de trabalho revelou que a priorizagdo continua e a limitacdo do trabalho em progresso
(WIP) foram fatores chave para a entrega consistente de funcionalidades, minimizando
retrabalho e garantindo que os requisitos de escalabilidade e resiliéncia fossem
incorporados desde as fases iniciais do projeto.

5. Analise e Discussao dos Resultados

A implementacao do sistema Remote Treatment revelou ndao apenas a viabilidade técnica
de uma plataforma de agendamento de mensagens multicanal e assincrona, ancorada na
stack tecnologica Python/Django/Celery/Docker, mas também sua adequacdo para
contextos de telemedicina. Os resultados derivados do protétipo desenvolvido validam a
arquitetura proposta, confirmando o atendimento aos objetivos especificos delineados na
secdo de metodologia. Essa andlise adota uma abordagem interpretativa, confrontando os
achados empiricos com o referencial teorico, a fim de elucidar contribuigdes, limitagcdes
e implicagdes para a pratica em satde digital. Ao examinar os resultados, busca-se ndo
apenas descrever o que foi alcangado, mas também discutir como esses elementos
preenchem lacunas identificadas na literatura, promovendo uma reflexdo critica sobre o
potencial transformador do sistema e sua aderéncia as melhores praticas de engenharia de
software para sistemas distribuidos.

5.1 Produto e Viabilidade Técnica

O produto resultante constitui um backend funcional, integralmente conteinerizado e apto
para integragdo com interfaces frontend ou sistemas de gestao clinica existentes. A adog¢ao
do Docker Compose facilitou a replicagdo precisa de ambientes de desenvolvimento, teste
e produgdo, assegurando portabilidade, isolamento de dependéncias e minimizando
discrepancias ambientais — um principio fundamental na engenharia de software para
mitigar riscos de implantagdo e facilitar a integracdo continua/entrega continua (CI/CD).

Essa configuracdo ndo sé acelera o ciclo de desenvolvimento, mas também reforca a
robustez do sistema em cenarios reais, onde a estabilidade, a segurancga e a previsibilidade
sdo cruciais para aplicagdes de satde.

Testes realizados no protétipo, conforme documentado no repositorio do projeto,
corroboraram a eficacia da implementacdo em trés dimensdes chave:

Desacoplamento de Tarefas: O servidor web baseado em Django manteve alta
responsividade durante simulagdes de agendamento em massa (e.g., 10.000
agendamentos em 5 segundos), gracas a delegagdao imediata das tarefas de envio
ao Celery Worker através de um message broker (como Redis ou RabbitMQ). Isso
exemplifica o principio de processamento assincrono, evitando bloqueios em
operagdes de entrada/saida (I/O) intensivas, como conexdes com Servigos
externos de e-mail, e alinhando-se a boas praticas de arquitetura escalavel e
resiliente. A capacidade de enfileirar tarefas permite que a API responda
rapidamente ao cliente, enquanto o trabalho pesado é processado em segundo
plano, melhorando a experiéncia do usudrio e prevenindo timeouts.

Confiabilidade do Agendamento: O Celery Beat demonstrou precisdo ao
monitorar o banco de dados e despachar tarefas no scheduled time estipulado,
funcionando como um agendador recorrente confiavel. Em testes com intervalos
de verificagdo de um minuto, o sistema processou agendamentos com laténcia
minima (tipicamente < 5 segundos entre o scheduled time e o inicio do
processamento da tarefa), validando sua capacidade para cendrios de alta
frequéncia, como lembretes diarios em programas de tratamento remoto ou
campanhas de satide publica. A robustez do Celery Beat ¢ crucial para garantir
que nenhuma mensagem agendada seja perdida ou atrasada significativamente,
um requisito ndo-funcional critico em aplica¢des de satde.

Envio Funcional: A integracdo com o protocolo SMTP, configurada via backend
nativo do Django, foi comprovada por meio de envios bem-sucedidos de
mensagens de e-mail, com taxas de sucesso acima de 95% em cenarios simulados
que incluiam validagdo bésica de enderecos e tratamento de erros de conexao.
Essa validagdo técnica ndo apenas confirma a operabilidade do canal primario,
mas também destaca a importancia de configuracdes seguras de credenciais
(utilizando variaveis de ambiente ou sistemas de gerenciamento de segredos) para
prevenir vulnerabilidades e garantir a privacidade dos dados de saude, em
conformidade com regulamentacdes como a LGPD/GDPR. Além disso, a
arquitetura permite a implementagdo de retry mechanisms e dead-letter queues
para lidar com falhas transitérias de envio, garantindo a entrega eventual da
mensagem ou o registro da falha para anélise.

Esses resultados atestam a viabilidade técnica do Remote Treatment, posicionando-o
como uma solugao pratica e robusta para otimizar fluxos de comunicagdo em ambientes
de satde distribuidos, com foco em desempenho, confiabilidade e seguranca.

5.2 Discussao e Contribuicoes

O Remote Treatment inova na area de tratamento remoto ao prover uma infraestrutura
tecnologica que aborda diretamente a demanda por comunicagdo proativa e automatizada
com assistidos, mitigando desafios como o absenteismo e a baixa adesdo terapéutica. Sua
arquitetura centrada no Celery confere escalabilidade e tolerancia a falhas, atributos
indispensaveis para sistemas que gerenciam volumes elevados de dados e interacdes
externas. Em comparagdo com trabalhos relacionados, como os de (POSTAL et al. 2021),
(DANTAS, 2016) e (VALENTINI, 2021), que frequentemente abordam a telemedicina
sob a perspectiva da interface ou da gestdo de dados clinicos, o presente sistema se
distingue pela énfase na assincronicidade e na orquestra¢do de tarefas. Essa abordagem
permite o manuseio eficiente de picos de demanda sem comprometer a performance da
API — uma limitacdo comum em abordagens sincronas tradicionais, onde a laténcia de
operagdes externas pode degradar significativamente a experiéncia do usuario.

As contribuigdes principais podem ser sintetizadas em trés eixos:

e Otimizacio de Processos e Eficiéncia Operacional: Ao automatizar o envio de
lembretes e mensagens informativas, o sistema libera profissionais de satde de
tarefas repetitivas e administrativas, permitindo um foco maior em cuidados
clinicos e na interacdo direta com pacientes que necessitam de atengdo
individualizada. Isso ecoa conceitos de automacdo em saude digital, onde a
eficiéncia operacional pode elevar a qualidade do atendimento e reduzir custos,
conforme discutido na literatura sobre telemedicina e gestao de clinicas. A redugado
do tempo gasto em comunica¢des manuais pode ser traduzida em maior
disponibilidade dos profissionais para atividades de maior valor agregado.

o Engajamento Proativo e Adesao Terapéutica: A precisdo no agendamento
(garantindo entregas no scheduled time exato) fortalece o vinculo com o paciente,
potencializando a adesdo ao tratamento e a participagdo em consultas. Exemplos
incluem lembretes personalizados para cirurgias, exames ou medicagdo, que,
segundo testes e estudos correlatos, poderiam reduzir auséncias em até 20-30%
em contextos semelhantes, baseados em evidéncias de impacto de intervengdes de
saude digital. O envio de mensagens contextuais e oportunas pode influenciar
positivamente o comportamento do paciente, promovendo a autogestdo da satde.

o Rastreabilidade e Governanca de Dados: O modelo MessagelLog oferece um
mecanismo robusto para monitorar o ciclo de vida de cada mensagem — desde o
agendamento até o sucesso ou falha de envio. Isso gera dados analiticos valiosos
para refinamentos iterativos do sistema e para a avaliagdo do impacto das
comunicacdes. Essa funcionalidade promove a conformidade com padrdes éticos
e regulatorios em saude, como a rastreabilidade de comunicagdes sensiveis e a
auditoria de acessos (LGPD/GDPR), e fornece insights para melhorias continuas
na estratégia de comunicagdo e na identificacdo de gargalos operacionais.

Contudo, ¢ oportuno discutir limitagdes inerentes a fase de prototipagem: os testes
foram conduzidos em ambientes controlados, sem integracio com dados reais de
pacientes (utilizando dados ficticios ou anonimizados) e sem validagdo em larga escala
em cenarios clinicos de producao. Isso sugere a necessidade de validagdes empiricas em
ambientes reais para aferir impactos reais na adesdo e na eficiéncia operacional, bem
como para identificar desafios de integracao com sistemas legados. Essa reflexdo critica
refor¢a a importancia de abordagens mistas em pesquisas futuras, combinando anélise
técnica com avaliagdes qualitativas de usuarios e estudos de caso em contextos clinicos.

5.3 Escalabilidade e Flexibilidade

A arquitetura conteinerizada via Docker Compose evidenciou alta escalabilidade, com a
separa¢dao modular de componentes (Web/API, Worker, Beat, Database, Message Broker)
permitindo o escalonamento horizontal independente. Em simulagdes de pico, a adi¢ao
dindmica de workers Celery (e.g., de 1 para 4 instancias) aumentou a capacidade de
processamento de tarefas em até 300%, sem sobrecarregar o servidor Django ou o
message broker — um testemunho da resiliéncia e do design distribuido. Para o servidor
Django, a utilizagao de um load balancer (como Nginx) permitiria escalar multiplas
instancias da API, distribuindo o trafego e garantindo alta disponibilidade. Essa
caracteristica ¢ particularmente valiosa em contextos de saide, onde demandas sazonais
(e.g., campanhas de vacinagdo, surtos epidemioldgicos) podem gerar subitos e intensos
picos de agendamentos e comunicacdes.

Ademais, a flexibilidade do sistema foi confirmada pela modularidade de sua
estrutura, facilitando a incorpora¢ao de novos canais de comunica¢ao. Embora o foco
inicial recaia no e-mail via SMTP, a logica baseada em tarefas do Celery e a abstragio do
servigo de envio de mensagens permitem extensdes para outros canais, como WhatsApp
(via Twilio ou API oficial), SMS ou notifica¢des push, com alteragdes minimas na camada
de agendamento central. Isso seria alcancado através da implementacao de novos Celery
tasks que encapsulam a logica de envio para cada provedor, utilizando um padrdo de
adaptador (Adapter Pattern) para desacoplar a logica de negocio dos detalhes de
implementagdo de cada canal. Essa adaptabilidade posiciona o Remote Treatment como
uma plataforma multicanal versatil, preparada para evolugdes tecnologicas e demandas
futuras em telemedicina, alinhando-se a tendéncias de integragdao hibrida e
interoperabilidade em sistemas de satde digital.

6. Consideracoes Finais

O presente estudo cumpriu integralmente o objetivo geral de conceber e analisar o Remote
Treatment — Sistema de Agendamento de Mensagens, uma inovag¢do tecnologica
destinada a aprimorar a comunicacdo em tratamentos remotos. A sintese dos achados
demonstra que a orquestragao de tecnologias open-source, como Django e Celery, sob a
égide do Docker e com o suporte de um message broker, culmina em uma arquitetura de
backend robusta, escalavel e confiavel, apta a gerenciar envios assincronos de mensagens
via e-mail. Essa integra¢do ndo apenas atende as demandas operacionais de programas de
saude digital, mas também exemplifica principios de engenharia de software aplicados a
contextos reais, promovendo eficiéncia, resiliéncia e conformidade com requisitos de
segurancga e privacidade de dados.

A contribui¢do primordial do Remote Treatment reside em sua capacidade de
mitigar gargalos por meio do processamento assincrono, assegurando que agendamentos
em massa ndo impactem a performance global da aplicagdo. Ao automatizar
comunicagdes proativas, o sistema emerge como uma ferramenta estratégica para reduzir
absenteismo, fomentar adesdo terapéutica e elevar a qualidade do cuidado ao paciente,
com implicagdes diretas para a telemedicina e a gestdo de saude populacional. Em
esséncia, trata-se de uma prova de conceito exitosa que pavimenta o caminho para
avancos em sistemas de comunicagdo automatizada na satde, alinhando-se a paradigmas
emergentes de saide conectada e personalizada, onde a comunicagdo eficaz ¢ um pilar
fundamental.

Para perspectivas futuras, sugere-se a expansdo para validagdes em ambientes
clinicos reais, incorporando métricas de impacto (e.g., taxas de adesdo pré e pOs-
implementag¢do, reducdo de custos operacionais) e integragdes com sistemas de
prontuario eletronico (EHR/EMR) para um fluxo de dados mais coeso. A incorporacao de
inteligéncia artificial, como processamento de linguagem natural (NLP) para analise de
sentimentos em respostas ou algoritmos de aprendizado de maquina para personalizagao
dinamica de mensagens com base no perfil e histérico do paciente, poderia amplificar o
valor terapéutico do sistema. Essa evolugdo poderia ampliar o escopo do trabalho,
convidando colaboragdes interdisciplinares entre engenharia de software, saude publica,
ciéncias sociais e €tica em inteligéncia artificial. Em resumo, o Remote Treatment nao ¢
mero artefato técnico, mas uma ponte para inovagdes que humanizam o cuidado remoto,
contribuindo para uma pratica de satide mais inclusiva, eficaz e orientada por dados.

Referéncias

Alfard, M. F. (2024). “Aumentando o desempenho do Django com o aipo”. LinkedIn.
Disponivel em: https://pt.linkedin.com/pulse/boosting-django-performance-celery-
deep-dive-mohammad-fa-alfard-caghf?tl=pt.

Dantas, M. C. R. (2016). “Ferramenta digital para agendamento de atendimento médico
em unidades de saatde 100% SUS”. UFRGS. Disponivel em:
https://lume.ufrgs.br/handle/10183/157919.

Dantas, M. C. R. (2016). “Sistema de Telemonitoramento para Pacientes com Esclerose
Lateral Amiotrofica”. Repositorio UFRN. Disponivel em:
https://repositorio.ufrn.br/items/b051f221-b19e-4bba-98ea-14e0d993800e.

Marinho, L. “35 Modelos de Mensagens de Confirmacdao de Consulta para Clinicas e
Meédicos”. Cliagenda, 2024. Disponivel em: https://cliagenda.com/mensagens-de-
confirmacao-de-consulta/. Acesso em: 22 nov. 2025.

Minha Agenda Virtual (2025) “Plataforma de Agendamento Online”. Mupi Systems.
Disponivel em: https://minhaagendavirtual.com.br/. Acesso em: 22 nov. 2025.

Mota, N. (2018). “Executando processos em background com Django e Celery”. Medium.
Disponivel em: https://medium.com/luizalabs/executando-processos-em-background-
com-django-e-celery-5ade867e1bf3.

Oliveira, E. (2022). “Django + Celery: testando sistemas com filas”. dev.to. Disponivel
em: https://dev.to/eduardojm/django-celery-testando-sistemas-com-filas-3eln.

Paiva (2018). “SMART: Sistema de Monitoramento e Avaliacdo do Programa Nacional
Telessaude Brasil Redes”. UFRN. Disponivel em:
https://repositorio.ufrn.br/bitstreams/eftb498b6-597a-4191-a62d-
12d56ab1458a/download.

Postal, L., CELUPPI, I. C., LIMA, G. DOS S., FELISBERTO, M., LACERDA, T. C.
(2021). “Sistema de agendamento online: uma ferramenta do PEC e-SUS APS para
facilitar o acesso a Atengao Primaria no Brasil”. Ciéncia & Saude Coletiva, 26.

Santos, E. (2024). “40 Exemplos de Respostas Réapidas no Whatsapp Para Clinicas”.
Conclinica. Disponivel em: https://conclinica.com.br/respostas-rapidas-no-whatsapp/.

https://pt.linkedin.com/pulse/boosting-django-performance-celery-deep-dive-mohammad-fa-alfard-caqhf?tl=pt
https://pt.linkedin.com/pulse/boosting-django-performance-celery-deep-dive-mohammad-fa-alfard-caqhf?tl=pt
https://lume.ufrgs.br/handle/10183/157919
https://repositorio.ufrn.br/items/b051f221-b19e-4bba-98ea-14e0d993800e.
https://cliagenda.com/mensagens-de-confirmacao-de-consulta/
https://cliagenda.com/mensagens-de-confirmacao-de-consulta/
https://minhaagendavirtual.com.br/
https://medium.com/luizalabs/executando-processos-em-background-com-django-e-celery-5ade867e1bf3
https://medium.com/luizalabs/executando-processos-em-background-com-django-e-celery-5ade867e1bf3
https://dev.to/eduardojm/django-celery-testando-sistemas-com-filas-3e1n
https://repositorio.ufrn.br/bitstreams/efb498b6-597a-4191-a62d-12d56ab1458a/download
https://repositorio.ufrn.br/bitstreams/efb498b6-597a-4191-a62d-12d56ab1458a/download
https://conclinica.com.br/respostas-rapidas-no-whatsapp/

Valentini, L. (2021). “MedScan: applicazione web per 1'identificazione automatica di
farmaci e la loro condivisione con il medico curante”. Tese de graduacdo. Disponivel
em: https://morethesis.unimore.it/theses/available/etd-09272021-132958/.

https://morethesis.unimore.it/theses/available/etd-09272021-132958/

