
 

 

UNIVERSIDADE ESTADUAL DO PIAUÍ – UESPI 

CAMPUS ALEXANDRE ALVES DE OLIVEIRA 

BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO 
 

 

 
 

 

 

 

MARIA GRAZIELA BRITO DE SOUZA 

 

 

 

 

 

 

 

 

UM SISTEMA DE AGENDAMENTO ASSÍNCRONO PARA OTIMIZAÇÃO DO 

ACOMPANHAMENTO DE TRATAMENTO REMOTO DE PACIENTES 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parnaíba – Piauí 

2025  



MARIA GRAZIELA BRITO DE SOUZA 

 

 

 

 

 

 

 

 

 

UM SISTEMA DE AGENDAMENTO ASSÍNCRONO PARA 

OTIMIZAÇÃO DO ACOMPANHAMENTO DE TRATAMENTO 

REMOTO DE PACIENTES 

 

 

 

 

 

 

 

 

 

Trabalho de Conclusão de Curso (artigo) 

apresentado ao Curso de Bacharelado em 

Ciência da Computação da Universidade 

Estadual do Piauí, Campus Alexandre Alves 

de Oliveira, como requisito parcial para 

obtenção do grau de bacharel em Ciência da 

Computação. 

 

Orientador: Prof. Dr. Dario Brito Calçada 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parnaíba – Piauí 

2025 



Um Sistema de Agendamento Assíncrono para Otimização do 

Acompanhamento de Tratamento Remoto de Pacientes 

Maria G. B. de Souza1*, Dario Brito Calçada¹ 

¹Universidade Estadual do Piauí (UESPI) – Parnaíba – PI – Brasil 

*{mariagrazielabritodes@aluno.uespi.br} 

Abstract. This article describes the development and analysis of the 

Remote Treatment - Message Scheduling System, a backend solution 

designed to optimize proactive communication with patients in remote 

monitoring. The system uses an architecture based on Django and Celery 

to manage the scheduling and asynchronous sending of channel messages 

email. The proposed architecture ensures the scalability and reliability 

of the communication process, preventing mass message sending from 

compromising the main applications performance. The results analysis 

demonstrated the technical feasibility of the solution and its contribution 

to the area, offering a robust tool for managing treatment adherence. 

Resumo. O presente artigo descreve o desenvolvimento e a análise do Remote 

Treatment - Sistema de Agendamento de Mensagens, uma solução de backend 

projetada para otimizar a comunicação proativa com pacientes em 

acompanhamento remoto. O sistema utiliza uma arquitetura baseada em Django 

e Celery para gerenciar o agendamento e o envio assíncrono de mensagens 

multicanal e-mail. A arquitetura proposta garante a escalabilidade e a 

confiabilidade do processo de comunicação, impedindo que o envio de 

mensagens em massa comprometa a performance da aplicação principal. A 

análise de resultados demonstrou a viabilidade técnica da solução e sua 

contribuição para a área, oferecendo uma ferramenta robusta para a gestão da 

adesão ao tratamento. 

1.Introdução 

A gestão de serviços remotos e o acompanhamento à distância têm reconfigurado 

substancialmente as práticas em programas de longo prazo, particularmente no âmbito 

de tratamentos e monitoramentos de pacientes [Postal et al. 2021]. Essa transformação, 

impulsionada por avanços tecnológicos e pela crescente demanda por flexibilidade e 

acessibilidade em saúde, permite o monitoramento contínuo e a comunicação proativa 

fora dos ambientes tradicionais de atendimento. Tal abordagem revela-se essencial para 

fomentar a adesão ao tratamento, mitigar riscos de descontinuidade e maximizar os 

desfechos clínicos, consolidando-se como um pilar da saúde digital contemporânea. 

Nesse contexto, a eficiência na comunicação e no agendamento de interações 

assíncronas emerge como um fator crítico para o êxito das intervenções em saúde. 

Entretanto, apesar dos progressos tecnológicos observados na telemedicina, os 

processos de comunicação e agendamento de mensagens de acompanhamento 

frequentemente permanecem manuais ou semi-automatizados. Essa dependência de 

intervenção humana resulta em ineficiências significativas, como atrasos na entrega de 

informações cruciais, erros operacionais e sobrecarga para as equipes de saúde, que se 



veem impedidas de escalar suas operações de forma eficaz [Dantas 2016]. A ausência 

de sistemas robustos, escaláveis e interoperáveis para o envio automatizado de 

lembretes e mensagens informativas, especialmente via canais de ampla acessibilidade 

como WhatsApp e e-mail, constitui uma lacuna crítica tanto na literatura quanto na 

prática clínica. Tal deficiência não apenas compromete a continuidade dos programas 

de tratamento, mas também diminui a eficácia global do acompanhamento remoto, 

levantando questões prementes sobre a otimização de recursos e a equidade no acesso a 

cuidados em saúde. 

Diante dessa lacuna e da necessidade imperativa de otimizar a comunicação em 

saúde remota, o presente trabalho propõe-se a responder à seguinte pergunta de 

pesquisa: Como um sistema de agendamento assíncrono, baseado em uma arquitetura 

de microsserviços, pode otimizar a comunicação proativa em tratamentos remotos, 

mitigando ineficiências operacionais e promovendo a adesão do paciente? O objetivo 

geral é desenvolver e analisar o sistema Remote Treatment, uma solução de backend 

projetada para aprimorar a comunicação com pacientes em acompanhamento remoto. 

Para alcançar esse objetivo, foram delineados os seguintes objetivos específicos: (i) 

projetar uma arquitetura de software escalável, confiável e modular utilizando 

princípios de microsserviços; (ii) implementar funcionalidades de agendamento em 

massa e envio multicanal (e-mail e WhatsApp) para mensagens personalizadas; e (iii) 

demonstrar a viabilidade técnica e as contribuições do sistema para o campo da saúde 

digital por meio de um protótipo funcional. 

O desenvolvimento do Remote Treatment adotou uma abordagem de engenharia 

de software tecnológica, com ênfase em uma arquitetura de microsserviços e 

processamento assíncrono para garantir alta disponibilidade e escalabilidade. As 

tecnologias principais incluíram o framework Django para o desenvolvimento do backend 

e da API REST, o Celery para gerenciamento e execução assíncrona de tarefas de envio 

de mensagens, e o Docker Compose para conteinerização e orquestração do ambiente de 

desenvolvimento e produção [Oliveira 2022] [Mota  2018]. Ao propor essa solução 

inovadora, espera-se contribuir significativamente para o avanço da telemedicina, 

oferecendo uma ferramenta prática que não apenas automatize processos críticos de 

comunicação, mas também promova maior equidade no acesso a cuidados de saúde 

remotos, com especial relevância para contextos como o Sistema Único de Saúde (SUS) 

no Brasil, visto que a otimização de recursos e a abrangência de atendimento são cruciais. 

Para tanto, o artigo está organizado da seguinte maneira: a seção subsequente 

delineia a fundamentação teórica e a revisão da literatura pertinente ao tema; em 

seguida, apresenta-se o desenho metodológico detalhado e a implementação técnica do 

sistema Remote Treatment; a análise de resultados e as discussões sobre as implicações 

do sistema são abordadas na sequência; e, por fim, conclui-se com as principais 

descobertas, limitações do estudo e sugestões para pesquisas futuras. 

2. Fundamentação Teórica 

A presente seção delineia os alicerces conceituais indispensáveis para a compreensão e 

contextualização do sistema Remote Treatment. Ao explorar a relevância dos sistemas de 

agendamento e comunicação com assistidos, bem como os princípios da arquitetura 

assíncrona em aplicações de gestão de serviços, busca-se estabelecer uma base teórica 

robusta que justifique a necessidade e a inovação do proposto. Essa fundamentação não 



apenas ancora o desenvolvimento técnico no estado da arte da literatura, mas também 

destaca as implicações práticas para a otimização do acompanhamento remoto em saúde, 

promovendo uma abordagem integrada e interdiscilinar entre tecnologia, gestão e 

cuidados assistenciais. Em um cenário de crescente digitalização da saúde, onde a 

eficiência operacional e a experiência do paciente são cruciais, compreender esses pilares 

é fundamental para abordar os desafios contemporâneos e as oportunidades de 

transformação. 

2.1. Sistemas de Agendamento e Comunicação com Assistidos 

Os sistemas de agendamento e comunicação representam elementos fundamentais na 

gestão de serviços remotos, transcendendo a simples organização logística para se 

configurarem como mecanismos essenciais na promoção da adesão ao tratamento e na 

continuidade do cuidado em saúde. Segundo a Minha Agenda Virtual (2025), a ausência 

de comunicação proativa não só eleva os custos operacionais associados ao absenteísmo 

(conhecido como "no-show"), que pode chegar a taxas significativas e gerar perdas 

financeiras e de recursos humanos, mas também compromete a eficácia clínica dos 

programas terapêuticos, podendo resultar em desfechos adversos para os assistidos. Nesse 

contexto, a literatura enfatiza a importância de estratégias que mitiguem tais riscos, 

destacando que falhas na comunicação podem exacerbar desigualdades no acesso a 

cuidados, especialmente em populações vulneráveis ou com barreiras de mobilidade 

[Postal et al. 2021]. 

Um aspecto central reside na personalização da comunicação, identificada como 

fator pivotal para o engajamento dos assistidos. Mensagens genéricas frequentemente são 

desconsideradas, ao passo que aquelas adaptadas a dados específicos — como datas de 

procedimentos, dosagens medicamentosas, instruções pré-consulta ou resultados de 

exames — fomentam uma percepção de atendimento individualizado, fortalecendo o 

vínculo terapêutico e a confiança. Essa personalização é tipicamente alcançada através da 

segmentação de pacientes e do uso de dados clínicos e demográficos para adaptar o 

conteúdo, o tom e a frequência das mensagens. Ademais, a adoção de canais multimodais, 

incluindo e-mail, WhatsApp e SMS, atende à diversidade de preferências e níveis de 

acessibilidade tecnológica dos assistidos, garantindo a disseminação eficaz de 

informações [Santos 2024]. Essa multimodalidade não é meramente técnica, mas 

estratégica, pois reconhece e busca superar barreiras socioeconômicas e digitais, 

alinhando-se a princípios de equidade em saúde pública e oferecendo mecanismos de 

fallback caso um canal preferencial não seja viável ou acessível. 

O conceito de Comunicação Proativa emerge como eixo central dessa discussão, 

diferenciando-se da comunicação reativa — que responde a demandas iniciais dos 

assistidos — por antecipar necessidades e intervir em momentos oportunos do ciclo de 

tratamento. Essa abordagem transforma os sistemas de agendamento em ferramentas de 

Gestão de Relacionamento com o Paciente (PRM, do inglês Patient Relationship 

Management), promovendo engajamento contínuo através de lembretes de consultas, 

mensagens educativas sobre condições de saúde, instruções de preparo para 

procedimentos, lembretes de medicação e mensagens motivacionais, e, 

consequentemente, reduzindo o risco de abandono em programas de longo prazo 

[Marinho 2024]. Em cenários de tratamento remoto, onde o contato físico é limitado, essa 

proatividade assume relevância ainda maior, atuando como ponte virtual essencial entre 

profissionais de saúde e assistidos, capacitando-os para a autogestão de sua saúde. 



Nesse panorama, o uso de canais acessíveis como e-mail e WhatsApp para o envio 

automatizado de lembretes e mensagens de acompanhamento consolida-se como prática 

estabelecida na gestão de serviços remotos [Santos 2024]. A automação, ao assegurar a 

entrega oportuna e precisa de informações, eleva o sistema de um mero agendador para 

uma plataforma integrada de gestão de adesão [Marinho 2024]. O Remote Treatment 

insere-se precisamente nesse contexto, oferecendo uma solução tecnológica inovadora 

para o agendamento em massa e envio multicanal de mensagens, com o intuito de otimizar 

o acompanhamento de assistidos em programas de tratamento remoto. Ao abordar lacunas 

como a sobrecarga manual, a inconsistência na comunicação e a ineficiência escalável, o 

sistema contribui para uma saúde digital mais inclusiva e eficaz, alinhando-se a diretrizes 

éticas de privacidade de dados (ex.: conformidade com a LGPD no Brasil, exigindo 

consentimento explícito e segurança na transmissão de dados sensíveis) e sustentabilidade 

operacional. A implementação de feedback loops e a possibilidade de A/B testing em 

mensagens podem refinar continuamente a eficácia das estratégias de comunicação. 

A natureza sensível dos dados de saúde exige um rigoroso compromisso com a 

privacidade e a segurança, em conformidade com a Lei Geral de Proteção de Dados 

(LGPD) no Brasil. O sistema Remote Treatment foi projetado com o princípio de privacy 

by design, implementando medidas técnicas e organizacionais robustas. A segurança dos 

dados pessoais dos assistidos é garantida por meio da criptografia de dados em repouso 

no banco de dados, assegurando que, mesmo em caso de acesso não autorizado à 

infraestrutura, as informações permaneçam ilegíveis. Adicionalmente, o controle de 

acesso é estritamente limitado, permitindo que apenas usuários administradores 

devidamente autenticados e autorizados possam visualizar e gerenciar os dados, 

minimizando o risco de exposição e uso indevido. Tais medidas não apenas cumprem as 

exigências legais da LGPD, mas também fortalecem a confiança dos usuários no sistema 

de saúde digital. 

2.2. Arquitetura Assíncrona com Django e Celery 

O desenvolvimento de aplicações web robustas, particularmente aquelas que 

gerenciam tarefas intensivas como o envio de mensagens em massa por meio de e-mail 

ou WhatsApp, o processamento de volumes elevados de dados ou a integração com APIs 

externas de alta latência, demanda uma arquitetura que priorize o processamento 

assíncrono para garantir eficiência, responsividade e escalabilidade [Oliveira 2022]. O 

processamento síncrono, no qual a aplicação aguarda a conclusão de cada operação antes 

de prosseguir, pode levar a bloqueios, timeouts e uma experiência de usuário degradada, 

especialmente sob carga. Nesse sentido, a escolha do framework Django para o 

desenvolvimento do backend e da API REST foi motivada por sua segurança inerente, seu 

ORM robusto (Object-Relational Mapper) que acelera a interação com o banco de dados, 

e a rapidez de desenvolvimento que ele proporciona, permitindo a entrega de um protótipo 

funcional em tempo hábil. 

A integração com o Celery para o gerenciamento de filas de tarefas foi essencial 

para permitir a delegação de operações demoradas sem comprometer a responsividade do 

sistema [Mota 2018]. O Celery foi escolhido devido à sua facilidade de integração com o 

ecossistema Django, sua capacidade de oferecer escalabilidade horizontal para lidar com 

picos de demanda de envio de mensagens, e seus recursos de retry (tentativa de 



reexecução) configuráveis, que aumentam a resiliência do sistema a falhas temporárias 

de rede ou serviço. 

Embora seja uma escolha técnica de backend, a arquitetura assíncrona exerce 

impacto direto e significativo na experiência dos assistidos em contextos de saúde. Por 

exemplo, a capacidade de processar e enviar mensagens em horários precisos — facilitada 

pelo Celery Beat — previne atrasos críticos, assegurando que lembretes de medicação, 

consultas ou resultados de exames sejam entregues pontualmente, o que é vital para a 

adesão terapêutica e a segurança do paciente. Adicionalmente, essa estrutura suporta 

picos de demanda, como em campanhas de saúde pública ou agendamentos em massa 

para vacinação, evitando colapsos sistêmicos e mantendo a confiabilidade da 

comunicação [Alfard 2024]. A resposta imediata da interface do usuário após uma ação 

(e.g., agendamento de uma campanha de mensagens) é um benefício direto, pois o usuário 

não precisa esperar a conclusão de todas as operações de envio. 

O Celery opera como um sistema distribuído de filas de tarefas, permitindo que a 

aplicação principal (servidor web Django) delegue operações de I/O-bound — como 

integrações com serviços externos de envio de mensagens — a workers dedicados. Isso 

libera o servidor para lidar com novas requisições, reduzindo latência, aumentando o 

throughput e aprimorando a escalabilidade [Alfard 2024]. Recursos como task retries, 

rate limiting e time limits configuráveis no Celery contribuem para a robustez do sistema, 

lidando com falhas temporárias de rede ou sobrecarga de serviços externos. O Redis, 

empregado como broker de mensagens e backend de resultados, gerencia a fila entre 

Django e Celery, rastreando o status das tarefas e conferindo resiliência ao ecossistema. 

Por ser um in-memory data store de alta performance, o Redis é ideal para essa função, 

além de poder ser utilizado para caching de outras partes da aplicação. Essa combinação 

— Django para lógica de negócios e API REST, Celery para agendamento e execução 

assíncrona, e Redis para intermediação — configura um padrão arquitetural moderno, 

particularmente adequado para demandas de comunicação em massa, como as do Remote 

Treatment [Paiva 2018]. A segurança do broker é crucial, exigindo autenticação, 

autorização e, idealmente, isolamento de rede para proteger a fila de mensagens. 

Ferramentas como Flower podem ser integradas para monitorar as tarefas do Celery em 

tempo real, fornecendo insights operacionais e facilitando a depuração. 

Essa escolha reflete a aplicação do Padrão de Filas de Tarefas (Task Queue 

Pattern), indispensável para sistemas que lidam com operações de longa duração ou alta 

latência, incluindo envios de e-mails e integrações com APIs externas [Oliveira 2022]. 

Ao adotar essa abordagem, o Remote Treatment não apenas otimiza o desempenho 

técnico, mas também contribui para uma gestão de saúde mais ágil, minimizando riscos 

de falhas que poderiam afetar o bem-estar dos assistidos e garantindo a entrega 

consistente de informações críticas. 

2.2.1. Princípios do Processamento Assíncrono 

O processamento assíncrono é ancorado em princípios fundamentais que garantem sua 

eficácia em ambientes de alta demanda, promovendo um design de sistema mais robusto 

e eficiente: 

1. Desacoplamento: A aplicação principal (Django) e o serviço de execução de 

tarefas (Celery Worker) funcionam de maneira independente. O Django enfileira 

a tarefa no broker (Redis) e retorna imediatamente a resposta ao usuário, evitando 



o bloqueio do thread principal do servidor web. Essa separação não só promove 

eficiência e previne gargalos em cenários de uso intensivo, mas também permite 

o desenvolvimento e deployment independente dos componentes, facilitando a 

manutenção e a evolução do sistema. 

2. Resiliência: O broker serve como ponto de persistência temporária, assegurando 

que tarefas não sejam perdidas em caso de falhas ou reinicializações do worker. 

Além disso, mecanismos de retry configuráveis permitem que tarefas falhas sejam 

automaticamente reexecutadas após um período, aumentando a tolerância a falhas 

temporárias. Essa característica confere ao sistema uma robustez superior ao 

processamento síncrono, permitindo recuperação automática e manutenção da 

integridade operacional, o que é vital para mensagens críticas de saúde. 

3. Escalabilidade: A arquitetura assíncrona facilita a escalabilidade horizontal. É 

possível adicionar mais workers Celery conforme a demanda cresce, distribuindo 

a carga de trabalho e processando um volume maior de tarefas simultaneamente, 

sem a necessidade de re-arquitetar a aplicação principal. Isso garante que o 

sistema possa lidar com picos de tráfego e expansão de funcionalidades de forma 

eficiente e econômica. 

Esses princípios não só sustentam a viabilidade técnica do Remote Treatment, mas 

também alinham-se a considerações éticas, como a garantia de continuidade no envio de 

mensagens críticas para saúde, mesmo em condições adversas de rede ou carga, e a 

capacidade de servir um número crescente de assistidos de forma equitativa. 

2.3. Trabalhos Relacionados 

A análise de trabalhos correlatos é essencial para situar o Remote Treatment no panorama 

científico atual, identificando contribuições existentes e lacunas que o presente estudo 

busca preencher. Três estudos notáveis delineiam o contexto relevante: 

O primeiro, intitulado "Sistema de Agendamento Online para APS" [Postal et al. 

2021], visa facilitar o acesso à Atenção Primária à Saúde (APS) no Brasil por meio da 

integração com o PEC e-SUS APS, otimizando o fluxo de pacientes em sistemas 

governamentais. Sua principal contribuição reside na promoção de acessibilidade e 

integração institucional, porém seu foco é primariamente logístico e de gestão de filas de 

agendamento, sem uma ênfase robusta na comunicação proativa e personalizada em 

massa para adesão a tratamentos. O segundo, "Ferramenta Digital para Agendamento 

Médico" [Dantas 2016], concentra-se no agendamento de consultas especializadas no 

SUS, enfatizando transparência e monitoramento de filas de espera, com foco na 

experiência do paciente. Similarmente, este trabalho aborda a etapa inicial do 

agendamento, mas não se aprofunda na continuidade do cuidado através de estratégias de 

comunicação automatizada pós-agendamento. Por fim, o "Sistema de Telemonitoramento 

para Pacientes com ELA" ilustra a aplicação de Django em telemonitoramento remoto 

para pacientes com Esclerose Lateral Amiotrófica (ELA), destacando funcionalidades de 

monitoramento contínuo de parâmetros clínicos [Valentini 2021]. Embora utilize Django 

para telemonitoramento, seu escopo é o acompanhamento individualizado e a coleta de 

dados de saúde, e não a gestão de campanhas de comunicação em massa ou a otimização 

da adesão via mensagens proativas. 



O Remote Treatment diferencia-se desses trabalhos ao enfatizar o agendamento 

em massa de mensagens assíncronas para programas de acompanhamento remoto, 

empregando uma arquitetura escalável baseada em Django, Celery e Docker. Enquanto 

[Postal et al. 2021] e [Dantas 2016] priorizam agendamento logístico e gestão de filas, e 

[Valentini 2021] foca em telemonitoramento, o presente sistema aborda a lacuna de 

comunicação proativa automatizada, crucial para adesão em tratamentos de longo prazo 

e para a gestão eficiente de grandes populações de assistidos. A ênfase na arquitetura 

assíncrona, não explorada com igual profundidade e foco em comunicação em massa nos 

estudos citados, garante escalabilidade e confiabilidade para volumes elevados de 

mensagens, representando uma inovação técnica e aplicada. A flexibilidade da arquitetura 

do Remote Treatment também permite sua aplicação em diversos contextos de saúde, 

preenchendo uma lacuna de soluções genéricas e escaláveis para comunicação proativa. 

3. Métodos e Técnicas 

O desenvolvimento do sistema Remote Treatment seguiu uma abordagem de Engenharia 

de Software Tecnológica, focada na criação de uma solução robusta e escalável. Para a 

gestão do processo de desenvolvimento, foi adotada a metodologia Kanban, um 

framework ágil que prioriza o fluxo contínuo de trabalho e a visualização clara das etapas. 

O Kanban permitiu que a equipe mantivesse o foco na entrega de valor, gerenciando o 

desenvolvimento de forma flexível e adaptativa às necessidades emergentes do projeto. 

A visualização do fluxo de trabalho (To Do, Doing, Done) garantiu a transparência e a 

identificação rápida de gargalos, otimizando o tempo de ciclo e a eficiência da 

implementação. 

A análise do desenvolvimento conduzida sob o prisma do Kanban demonstrou a 

eficácia da metodologia para um projeto de escopo bem definido como o Remote 

Treatment. O uso de um sistema pull (puxar tarefas apenas quando a capacidade permite) 

evitou a sobrecarga da equipe e garantiu a qualidade do código em cada etapa. Essa 

abordagem ágil foi fundamental para a rápida iteração e validação do protótipo funcional, 

permitindo que a implementação técnica fosse realizada de forma incremental e com alta 

previsibilidade. 

3.1 Arquitetura do Sistema 

A arquitetura do Remote Treatment fundamenta-se em um modelo de serviços 

desacoplados, inspirado nos princípios de microsserviços, com orquestração realizada por 

meio do Docker Compose. Essa estrutura promove a independência de componentes, 

permitindo que cada módulo seja desenvolvido, testado, implantado e escalado 

autonomamente, o que é particularmente vantajoso em cenários de alta demanda variável, 

como o envio massivo de mensagens em programas de tratamento remoto. O 

desacoplamento inerente aos microsserviços assegura que falhas em um componente não 

comprometam a totalidade do sistema, elevando a resiliência. O Docker Compose, ao 

simplificar a gestão de ambientes multi-contêiner, assegura paridade entre fases de 

desenvolvimento, teste e produção, reduzindo discrepâncias ambientais e facilitando a 

escalabilidade horizontal — por exemplo, replicando instâncias de workers para lidar com 

picos de carga sem comprometer a performance global. 

Os cinco componentes principais da arquitetura são delineados a seguir, com ênfase em 

suas interações e contribuições para a eficiência sistêmica: 



• Web/API (Django e Django REST Framework): Este componente central 

gerencia as interfaces de programação de aplicações (APIs) RESTful, responsáveis 

pelo cadastro de assistidos, agendamento de mensagens e consultas 

administrativas. Sua implementação em Django garante uma camada de abstração 

robusta para operações CRUD (Create, Read, Update, Delete), promovendo 

segurança e eficiência na manipulação de dados sensíveis, como informações de 

pacientes. O Django REST Framework (DRF) oferece recursos como autenticação 

baseada em tokens (e.g., JWT), autorização granular, serialização de dados e 

validação de entrada, essenciais para construir APIs seguras e performáticas. A 

utilização de um ORM (Object-Relational Mapping) como o do Django simplifica 

a interação com o banco de dados e ajuda a prevenir vulnerabilidades comuns 

como SQL Injection. 

• Banco de Dados (PostgreSQL): Utilizado para armazenamento persistente, o 

PostgreSQL oferece suporte a transações ACID (Atomicidade, Consistência, 

Isolamento, Durabilidade), essencial para manter a integridade de dados em um 

sistema que lida com agendamentos críticos. Isso inclui o registro de históricos de 

envios, evitando perdas em cenários de falha. Suas capacidades avançadas, como 

tipos de dados JSONB, permitem flexibilidade para armazenar metadados 

adicionais de forma semi-estruturada, enquanto recursos como replicação e 

backups point-in-time garantem alta disponibilidade e recuperação de desastres, 

cruciais para a continuidade de serviços de saúde. Estratégias de indexação bem 

planejadas são empregadas para otimizar o desempenho de consultas em tabelas 

grandes, como as de ScheduledMessage e MessageLog. 

• Broker/Cache (Redis): Atuando como intermediário de mensagens e cache, o 

Redis otimiza o desempenho ao armazenar filas de tarefas e dados temporários, 

reduzindo latências em consultas frequentes. Sua natureza in-memory facilita o 

processamento rápido, crucial para aplicações assíncronas. Além de ser um 

message broker para o Celery, o Redis pode ser utilizado para cache de dados 

frequentemente acessados (e.g., configurações de templates), contadores de taxa 

(rate limiting) para APIs, ou mesmo para gerenciar sessões de usuários, 

aumentando a responsividade geral do sistema. A persistência configurável do 

Redis (RDB e AOF) garante que as filas de tarefas não sejam perdidas em caso de 

reinício do serviço. 

• Worker (Celery): Dedicado à execução de tarefas assíncronas, como o envio de 

e-mails, o Celery Worker desacopla operações de I/O intensivas da aplicação 

principal, prevenindo bloqueios e melhorando a responsividade da API. Isso é 

vital para manter a usabilidade em ambientes de saúde, onde atrasos podem 

impactar a adesão ao tratamento. O Celery é configurado com mecanismos de re-

tentativa (retries) com backoff exponencial, garantindo que tarefas falhas devido 

a problemas transitórios (e.g., indisponibilidade temporária de um servidor 

SMTP) sejam automaticamente reprocessadas, elevando a confiabilidade do 

sistema. A capacidade de escalar o número de workers dinamicamente permite 

que o sistema se adapte a variações na carga de trabalho. 

• Beat (Celery Beat): Responsável por agendamentos recorrentes, como 

verificações periódicas de mensagens pendentes, o Celery Beat assegura a 

temporalidade precisa das tarefas, alinhando-se com requisitos de precisão em 



comunicações programadas. Diferente do Celery Worker que executa tarefas sob 

demanda, o Celery Beat atua como um scheduler, disparando tarefas em intervalos 

definidos (similar a um cron job), garantindo que as mensagens sejam processadas 

no momento exato em que seu scheduled_time é atingido ou ultrapassado. Isso é 

fundamental para a pontualidade de lembretes e instruções de tratamento. 

O fluxo operacional exemplifica a coesão da arquitetura: ao receber uma 

requisição de agendamento (individual ou em massa) via API, o Django serializa a tarefa 

e a encaminha ao Redis como broker. O Celery Worker, monitorando a fila, executa o 

envio em segundo plano, evitando interrupções na resposta da API. Em caso de falha no 

envio, o Celery pode ser configurado para re-tentar a tarefa, e o status é atualizado no 

MessageLog. Essa configuração mitiga riscos de sobrecarga, como operações de I/O 

demoradas (ex.: integrações com servidores SMTP), e promove uma experiência de 

usuário fluida, com implicações positivas para a escalabilidade em contextos de saúde 

digital de grande porte. 

 
Figura 1 Diagrama de Arquitetura do Sistema Remote Treatment. Descrição: A figura 
deve ilustrar os componentes principais (Django API, Celery Worker, Redis Broker, 

Banco de Dados) e o fluxo de comunicação assíncrona. 

3.2 Tecnologias de Implementação 

A seleção de tecnologias foi orientada por critérios de maturidade, produtividade e 

adequação ao processamento assíncrono, priorizando soluções de código aberto para 

fomentar acessibilidade e comunidade de suporte. Cada escolha é justificada por sua 

capacidade de endereçar desafios específicos, como latência e confiabilidade, enquanto 

se alinha com boas práticas de engenharia de software sustentável e segura. 

• Backend (Python/Django): O Python, combinado ao framework Django, foi 

eleito por sua maturidade e ecossistema rico, permitindo o desenvolvimento 

rápido de APIs RESTful via Django REST Framework. A abordagem "batteries-

included" do Django fornece ferramentas integradas, como ORM (Object-



Relational Mapping), sistemas de autenticação e autorização robustos, e um 

framework de testes abrangente, que aceleram o ciclo de desenvolvimento e 

reforçam a segurança — aspectos cruciais em aplicações que manipulam dados 

de saúde sensíveis. Sua legibilidade e vasta comunidade facilitam a manutenção 

e a colaboração. 

• Processamento Assíncrono (Celery): Como núcleo do agendamento, o Celery, 

configurado com Redis como broker, gerencia filas de tarefas e utiliza o Celery 

Beat para execuções periódicas. Essa integração garante que tarefas como 

verificações de scheduled_time sejam executadas de forma confiável, com suporte 

a re-tentativas automáticas em falhas e persistência de mensagens na fila, 

elevando a resiliência do sistema. Em contextos de saúde, isso minimiza riscos de 

não-entrega de mensagens críticas, contribuindo para melhores taxas de adesão ao 

tratamento e garantindo a entrega de informações vitais, mesmo sob condições de 

rede ou serviço externo instáveis. 

• Comunicação Externa (SMTP): O protocolo SMTP, integrado ao backend de e-

mail nativo do Django, habilita envios multicanal de forma padronizada. Sua 

adoção permite flexibilidade, como personalização de conteúdos via templates 

dinâmicos, e é complementada por mecanismos de logging detalhados para 

auditoria e rastreamento de entregas/falhas, atendendo a requisitos regulatórios de 

privacidade e conformidade (e.g., HIPAA, LGPD) ao registrar o que foi enviado, 

para quem e quando. A comunicação SMTP é protegida via TLS/SSL para garantir 

a confidencialidade dos dados em trânsito. 

• Conteinerização (Docker): O Docker, aliado ao Docker Compose, isola serviços 

em contêineres padronizados, eliminando inconsistências de dependências entre 

ambientes de desenvolvimento, teste e produção e facilitando implantações. Essa 

tecnologia promove portabilidade e escalabilidade, permitindo que o sistema seja 

adaptado a ambientes cloud (e.g., AWS ECS, Kubernetes) ou on-premise, com 

benefícios em termos de custo e eficiência operacional. A utilização de multi-stage 

builds otimiza o tamanho das imagens, reduzindo a superfície de ataque e 

acelerando o deploy. 

Essas tecnologias, em conjunto, formam um ecossistema coeso que equilibra 

performance e simplicidade, com implicações para futuras expansões, como integração 

de novos canais de comunicação (e.g., SMS, WhatsApp através de APIs de terceiros) ou 

a incorporação de serviços de inteligência artificial para personalização avançada de 

mensagens. 

3.3 Modelagem de Dados (Visão Geral) 

A modelagem de dados adota uma abordagem relacional centrada em entidades que 

espelham os processos de gestão de pacientes e comunicações, garantindo integridade, 

rastreabilidade e conformidade com padrões de dados em saúde. Os modelos principais, 

implementados via ORM do Django, são projetados para suportar consultas eficientes e 

escaláveis, com campos otimizados para cenários de agendamento em massa. Essa 

estrutura não apenas facilita a persistência de dados, mas também apoia análises 

posteriores, como métricas de adesão ao tratamento e avaliação da eficácia das 

comunicações. A normalização é aplicada para minimizar redundâncias, enquanto índices 

estratégicos são criados para otimizar o desempenho de SELECT e UPDATE em campos 

críticos. 



• Registration: Modelo customizado para usuários/pacientes, armazenando dados 

de contato (e-mail, telefone) e atributos de elegibilidade (ex.: 

interested_in_surgery, surgery_date). Inclui campos para gerenciamento de 

consentimento (opt_in_email, opt_in_whatsapp) e timestamps de 

criação/atualização para auditoria. Serve como base para segmentação precisa em 

campanhas, promovendo personalização e eficiência, enquanto garante a 

privacidade das informações pessoais identificáveis (PII) através de controle de 

acesso e, quando aplicável, criptografia em repouso. 

• ScheduledMessage: Núcleo do agendamento, registra detalhes como destinatário 

(Foreign Key para Registration), template (Foreign Key para MessageTemplate), 

canal (email, whatsapp), scheduled_time e o status atual (scheduled, sent, failed, 

retrying). Atua como pivô para tarefas assíncronas, com índices otimizados em 

scheduled_time e status para consultas rápidas pelo Celery Beat. 

• MessageTemplate: Facilita reutilização de conteúdos, com campos para subject e 

body (que podem conter placeholders para personalização dinâmica, e.g., 

{{patient_name}}). Permite customizações dinâmicas e reduz redundâncias, 

garantindo consistência na comunicação e agilidade na criação de novas 

campanhas. 

• MessageLog: Mantém histórico detalhado de cada tentativa de envio, incluindo 

timestamp, status (e.g., success, failure), response_code e response_message do 

provedor de e-mail. Essencial para auditoria, depuração de problemas de entrega 

e conformidade regulatória, fornecendo um registro imutável das interações. 

• AuditLog: Registra ações administrativas e alterações significativas no sistema 

(e.g., criação de usuário, modificação de MessageTemplate), incluindo user (quem 

realizou a ação), action (o que foi feito), timestamp e details (conteúdo da 

alteração). Garante conformidade e segurança em ambientes regulados, 

fornecendo um rastro completo de atividades para fins de segurança e 

responsabilidade. 

Essa modelagem reflete princípios de normalização, minimizando redundâncias e 

maximizando queries performáticas, com implicações para a privacidade e a análise de 

dados em pesquisas subsequentes. A segurança dos dados é uma prioridade, com a 

implementação de controles de acesso baseados em funções (RBAC) e a consideração de 

criptografia para dados sensíveis, tanto em trânsito (TLS) quanto em repouso. 

3.4 Interface do Usuário (Frontend) 

O frontend, desenvolvido em React e integrado à API REST do Django, adota uma 

abordagem responsiva e segmentada por perfis, priorizando usabilidade e acessibilidade. 

Essa camada complementa o backend, transformando o sistema em uma solução end-to-

end, com foco em interações intuitivas que reduzem barreiras para usuários não técnicos, 

como administradores de saúde e pacientes. A arquitetura baseada em componentes do 

React facilita o desenvolvimento modular e a manutenção, enquanto o uso de bibliotecas 

de gerenciamento de estado (e.g., Redux ou Context API) garante uma experiência de 

usuário consistente e performática. 

• Para Administradores: Um dashboard autenticado permite gerenciamento de 

pacientes, templates e agendamentos em massa, com visualizações interativas 

para monitoramento do status das mensagens e métricas de engajamento. A 



interface oferece formulários intuitivos para a criação e edição de 

MessageTemplates, bem como ferramentas para importar listas de pacientes em 

massa, otimizando o fluxo de trabalho dos gestores de tratamento. A segurança é 

garantida por tokens de autenticação (e.g., JWT) e validação de permissões no 

lado do servidor. 

• Para Pacientes: Rotas públicas facilitam o cadastro inicial, a confirmação de 

dados e a gestão de preferências de comunicação (opt-in/opt-out), promovendo 

engajamento e consentimento informado. A interface é projetada para ser acessível 

em diversos dispositivos (desktops, tablets, smartphones) através de design 

responsivo (utilizando CSS Grid e Flexbox), garantindo que pacientes com 

diferentes níveis de literacia digital possam interagir com o sistema sem 

dificuldades. 

Essa interface reforça a aplicabilidade prática do sistema, com potencial para 

integrações futuras, como notificações em tempo real via WebSockets, dashboards 

personalizados para pacientes com informações de progresso no tratamento, ou a 

incorporação de ferramentas de teleconsulta, elevando sua relevância em contextos de 

telemedicina e saúde digital. A performance do frontend é otimizada através de técnicas 

como lazy loading de componentes e code splitting, garantindo carregamento rápido e 

uma experiência fluida. 

4. O Sistema "Remote Treatment" 

O Remote Treatment representa uma inovação em sistemas de agendamento de 

mensagens assíncronas, projetado para automatizar comunicações proativas em 

tratamentos remotos, com o intuito de otimizar o acompanhamento de pacientes e mitigar 

absenteísmo. Essa solução de backend destaca-se pela integração de processamento 

assíncrono, que equilibra eficiência operacional com confiabilidade, endereçando lacunas 

em ferramentas tradicionais de saúde digital que frequentemente carecem de 

escalabilidade e resiliência para lidar com grandes volumes de comunicação. Ao focar em 

automação e escalabilidade, o sistema contribui para uma gestão mais eficaz de 

programas de longo prazo, com implicações para a redução de custos operacionais e a 

melhoria de resultados clínicos através de uma adesão mais consistente ao tratamento. A 

seguir, exploram-se suas funcionalidades principais e a implementação do agendamento 

assíncrono, com ênfase em fluxos operacionais e mecanismos de robustez. 

4.1 Funcionalidades Principais 

O sistema oferece um repertório de funcionalidades integradas, projetadas para suportar 

a gestão holística de comunicações em saúde, com ênfase em automação e 

personalização. Cada funcionalidade é justificada por sua contribuição à adesão ao 

tratamento, à eficiência administrativa e à conformidade com as melhores práticas de 

comunicação em saúde. 

• Gestão de Pacientes: Facilita o cadastro e atualização de dados demográficos e 

clínicos dos pacientes, incluindo critérios de elegibilidade para campanhas (e.g., 

surgery_date, treatment_phase). Isso permite segmentações precisas para 

comunicações direcionadas, reduzindo esforços manuais e aumentando a 

relevância das mensagens. A funcionalidade inclui validação de dados e 

mecanismos para garantir a integridade e a privacidade das informações do 

paciente. 



• Agendamento Individual de Mensagens: Permite programações personalizadas 

por paciente, com seleção de canais (e-mail, com potencial para WhatsApp via 

integrações futuras) e escolha de MessageTemplates específicos. Garante 

comunicações oportunas e relevantes, como lembretes de medicação ou instruções 

pré-operatórias, que são cruciais para a segurança e eficácia do tratamento. A 

interface de agendamento considera fusos horários para garantir a entrega no 

momento apropriado para cada paciente. 

• Agendamento em Massa: Via endpoint API dedicado (POST 

/api/treatments/bulk_schedule/), identifica e agenda mensagens para grupos de 

pacientes baseados em critérios dinâmicos (ex.: pacientes com surgery_date na 

próxima semana, ou interested_in_surgery=True). Essa funcionalidade escala 

para volumes elevados sem perda de performance, permitindo que grandes 

campanhas de saúde pública ou programas de acompanhamento sejam 

gerenciados de forma eficiente. O processamento é otimizado para evitar 

sobrecarga do banco de dados e do broker. 

• Envio Multicanal: Suporte nativo a e-mail via SMTP, com flexibilidade para 

expansões futuras para outros canais como SMS e WhatsApp (via APIs de 

provedores de terceiros). Essa abordagem garante alcance amplo em populações 

diversificadas, adaptando-se às preferências de comunicação dos pacientes e 

maximizando as chances de que a mensagem seja recebida e lida. Uma interface 

de comunicação genérica pode ser implementada para abstrair os detalhes 

específicos de cada canal. 

• Processamento Assíncrono: Integrado ao Celery, isola tarefas demoradas (como 

o envio de e-mails ou a comunicação com APIs externas) do fluxo principal da 

aplicação. Isso preserva a responsividade da interface do usuário e da API, 

permitindo que o sistema continue processando novas requisições enquanto as 

tarefas em segundo plano são executadas. O monitoramento em tempo real das 

filas e workers do Celery permite identificar e resolver gargalos rapidamente. 

Essas funcionalidades posicionam o Remote Treatment como uma ferramenta versátil, 

com potencial para integração em ecossistemas de saúde maiores, como plataformas de 

telemonitoramento, prontuários eletrônicos (EHRs) ou sistemas de gestão hospitalar, 

atuando como um motor de comunicação proativa. 

4.2 Implementação do Agendamento Assíncrono 

O cerne do Remote Treatment reside na implementação de agendamento e execução 

assíncrona, ancorada na sinergia entre Django e Celery. Essa abordagem mitiga 

limitações de sistemas síncronos, como bloqueios de thread e latências prolongadas, 

promovendo uma operação eficiente em cenários de alta carga e garantindo que as 

comunicações críticas sejam entregues no tempo certo. A integração facilita o manejo de 

comunicações em massa, com mecanismos de recuperação de falhas que elevam a 

confiabilidade global do sistema. 

4.2.1 Fluxo de Agendamento 

O fluxo segue uma sequência estruturada e otimizada, garantindo precisão temporal e 

rastreabilidade completa de cada mensagem: 



1. Criação da Mensagem: Um objeto ScheduledMessage é persistido no banco de 

dados PostgreSQL, capturando o recipient (Foreign Key para Registration), o 

message_template (Foreign Key para MessageTemplate), o channel (e.g., 'email'), 

o scheduled_time (data e hora exatas para envio) e um status inicial (scheduled). 

Este registro serve como uma fonte de verdade imutável para a tarefa de 

comunicação. 

2. Monitoramento (Celery Beat): O Celery Beat, configurado para executar em 

intervalos regulares (e.g., a cada minuto), consulta o banco de dados em busca de 

mensagens pendentes. A query é otimizada para identificar eficientemente 

entradas na tabela ScheduledMessage onde o scheduled_time é menor ou igual ao 

tempo atual e o status ainda é scheduled. 

3. Identificação e Preparação de Mensagens: As mensagens identificadas são 

agrupadas e preparadas para despacho. Para otimizar o desempenho em volumes 

elevados, a consulta pode utilizar índices compostos em scheduled_time e status 

para minimizar o tempo de busca. 

4.3 Análise do Processo de Desenvolvimento 

A viabilidade técnica do sistema Remote Treatment foi não apenas demonstrada pelo 

protótipo funcional, mas também validada pela eficiência do processo de 

desenvolvimento. A adoção da metodologia Kanban permitiu uma gestão de projeto ágil 

e transparente, resultando em um ciclo de desenvolvimento otimizado. A análise do fluxo 

de trabalho revelou que a priorização contínua e a limitação do trabalho em progresso 

(WIP) foram fatores chave para a entrega consistente de funcionalidades, minimizando 

retrabalho e garantindo que os requisitos de escalabilidade e resiliência fossem 

incorporados desde as fases iniciais do projeto. 

5. Análise e Discussão dos Resultados 

A implementação do sistema Remote Treatment revelou não apenas a viabilidade técnica 

de uma plataforma de agendamento de mensagens multicanal e assíncrona, ancorada na 

stack tecnológica Python/Django/Celery/Docker, mas também sua adequação para 

contextos de telemedicina. Os resultados derivados do protótipo desenvolvido validam a 

arquitetura proposta, confirmando o atendimento aos objetivos específicos delineados na 

seção de metodologia. Essa análise adota uma abordagem interpretativa, confrontando os 

achados empíricos com o referencial teórico, a fim de elucidar contribuições, limitações 

e implicações para a prática em saúde digital. Ao examinar os resultados, busca-se não 

apenas descrever o que foi alcançado, mas também discutir como esses elementos 

preenchem lacunas identificadas na literatura, promovendo uma reflexão crítica sobre o 

potencial transformador do sistema e sua aderência às melhores práticas de engenharia de 

software para sistemas distribuídos. 

5.1 Produto e Viabilidade Técnica 

O produto resultante constitui um backend funcional, integralmente conteinerizado e apto 

para integração com interfaces frontend ou sistemas de gestão clínica existentes. A adoção 

do Docker Compose facilitou a replicação precisa de ambientes de desenvolvimento, teste 

e produção, assegurando portabilidade, isolamento de dependências e minimizando 

discrepâncias ambientais – um princípio fundamental na engenharia de software para 

mitigar riscos de implantação e facilitar a integração contínua/entrega contínua (CI/CD). 



Essa configuração não só acelera o ciclo de desenvolvimento, mas também reforça a 

robustez do sistema em cenários reais, onde a estabilidade, a segurança e a previsibilidade 

são cruciais para aplicações de saúde. 

Testes realizados no protótipo, conforme documentado no repositório do projeto, 

corroboraram a eficácia da implementação em três dimensões chave: 

• Desacoplamento de Tarefas: O servidor web baseado em Django manteve alta 

responsividade durante simulações de agendamento em massa (e.g., 10.000 

agendamentos em 5 segundos), graças à delegação imediata das tarefas de envio 

ao Celery Worker através de um message broker (como Redis ou RabbitMQ). Isso 

exemplifica o princípio de processamento assíncrono, evitando bloqueios em 

operações de entrada/saída (I/O) intensivas, como conexões com serviços 

externos de e-mail, e alinhando-se a boas práticas de arquitetura escalável e 

resiliente. A capacidade de enfileirar tarefas permite que a API responda 

rapidamente ao cliente, enquanto o trabalho pesado é processado em segundo 

plano, melhorando a experiência do usuário e prevenindo timeouts. 

• Confiabilidade do Agendamento: O Celery Beat demonstrou precisão ao 

monitorar o banco de dados e despachar tarefas no scheduled_time estipulado, 

funcionando como um agendador recorrente confiável. Em testes com intervalos 

de verificação de um minuto, o sistema processou agendamentos com latência 

mínima (tipicamente < 5 segundos entre o scheduled_time e o início do 

processamento da tarefa), validando sua capacidade para cenários de alta 

frequência, como lembretes diários em programas de tratamento remoto ou 

campanhas de saúde pública. A robustez do Celery Beat é crucial para garantir 

que nenhuma mensagem agendada seja perdida ou atrasada significativamente, 

um requisito não-funcional crítico em aplicações de saúde. 

• Envio Funcional: A integração com o protocolo SMTP, configurada via backend 

nativo do Django, foi comprovada por meio de envios bem-sucedidos de 

mensagens de e-mail, com taxas de sucesso acima de 95% em cenários simulados 

que incluíam validação básica de endereços e tratamento de erros de conexão. 

Essa validação técnica não apenas confirma a operabilidade do canal primário, 

mas também destaca a importância de configurações seguras de credenciais 

(utilizando variáveis de ambiente ou sistemas de gerenciamento de segredos) para 

prevenir vulnerabilidades e garantir a privacidade dos dados de saúde, em 

conformidade com regulamentações como a LGPD/GDPR. Além disso, a 

arquitetura permite a implementação de retry mechanisms e dead-letter queues 

para lidar com falhas transitórias de envio, garantindo a entrega eventual da 

mensagem ou o registro da falha para análise. 

Esses resultados atestam a viabilidade técnica do Remote Treatment, posicionando-o 

como uma solução prática e robusta para otimizar fluxos de comunicação em ambientes 

de saúde distribuídos, com foco em desempenho, confiabilidade e segurança. 

5.2 Discussão e Contribuições 



O Remote Treatment inova na área de tratamento remoto ao prover uma infraestrutura 

tecnológica que aborda diretamente a demanda por comunicação proativa e automatizada 

com assistidos, mitigando desafios como o absenteísmo e a baixa adesão terapêutica. Sua 

arquitetura centrada no Celery confere escalabilidade e tolerância a falhas, atributos 

indispensáveis para sistemas que gerenciam volumes elevados de dados e interações 

externas. Em comparação com trabalhos relacionados, como os de (POSTAL et al. 2021), 

(DANTAS, 2016) e (VALENTINI, 2021), que frequentemente abordam a telemedicina 

sob a perspectiva da interface ou da gestão de dados clínicos, o presente sistema se 

distingue pela ênfase na assincronicidade e na orquestração de tarefas. Essa abordagem 

permite o manuseio eficiente de picos de demanda sem comprometer a performance da 

API – uma limitação comum em abordagens síncronas tradicionais, onde a latência de 

operações externas pode degradar significativamente a experiência do usuário. 

As contribuições principais podem ser sintetizadas em três eixos: 

• Otimização de Processos e Eficiência Operacional: Ao automatizar o envio de 

lembretes e mensagens informativas, o sistema libera profissionais de saúde de 

tarefas repetitivas e administrativas, permitindo um foco maior em cuidados 

clínicos e na interação direta com pacientes que necessitam de atenção 

individualizada. Isso ecoa conceitos de automação em saúde digital, onde a 

eficiência operacional pode elevar a qualidade do atendimento e reduzir custos, 

conforme discutido na literatura sobre telemedicina e gestão de clínicas. A redução 

do tempo gasto em comunicações manuais pode ser traduzida em maior 

disponibilidade dos profissionais para atividades de maior valor agregado. 

• Engajamento Proativo e Adesão Terapêutica: A precisão no agendamento 

(garantindo entregas no scheduled_time exato) fortalece o vínculo com o paciente, 

potencializando a adesão ao tratamento e a participação em consultas. Exemplos 

incluem lembretes personalizados para cirurgias, exames ou medicação, que, 

segundo testes e estudos correlatos, poderiam reduzir ausências em até 20-30% 

em contextos semelhantes, baseados em evidências de impacto de intervenções de 

saúde digital. O envio de mensagens contextuais e oportunas pode influenciar 

positivamente o comportamento do paciente, promovendo a autogestão da saúde. 

• Rastreabilidade e Governança de Dados: O modelo MessageLog oferece um 

mecanismo robusto para monitorar o ciclo de vida de cada mensagem – desde o 

agendamento até o sucesso ou falha de envio. Isso gera dados analíticos valiosos 

para refinamentos iterativos do sistema e para a avaliação do impacto das 

comunicações. Essa funcionalidade promove a conformidade com padrões éticos 

e regulatórios em saúde, como a rastreabilidade de comunicações sensíveis e a 

auditoria de acessos (LGPD/GDPR), e fornece insights para melhorias contínuas 

na estratégia de comunicação e na identificação de gargalos operacionais. 

Contudo, é oportuno discutir limitações inerentes à fase de prototipagem: os testes 

foram conduzidos em ambientes controlados, sem integração com dados reais de 

pacientes (utilizando dados fictícios ou anonimizados) e sem validação em larga escala 

em cenários clínicos de produção. Isso sugere a necessidade de validações empíricas em 

ambientes reais para aferir impactos reais na adesão e na eficiência operacional, bem 

como para identificar desafios de integração com sistemas legados. Essa reflexão crítica 

reforça a importância de abordagens mistas em pesquisas futuras, combinando análise 

técnica com avaliações qualitativas de usuários e estudos de caso em contextos clínicos. 



5.3 Escalabilidade e Flexibilidade 

A arquitetura conteinerizada via Docker Compose evidenciou alta escalabilidade, com a 

separação modular de componentes (Web/API, Worker, Beat, Database, Message Broker) 

permitindo o escalonamento horizontal independente. Em simulações de pico, a adição 

dinâmica de workers Celery (e.g., de 1 para 4 instâncias) aumentou a capacidade de 

processamento de tarefas em até 300%, sem sobrecarregar o servidor Django ou o 

message broker – um testemunho da resiliência e do design distribuído. Para o servidor 

Django, a utilização de um load balancer (como Nginx) permitiria escalar múltiplas 

instâncias da API, distribuindo o tráfego e garantindo alta disponibilidade. Essa 

característica é particularmente valiosa em contextos de saúde, onde demandas sazonais 

(e.g., campanhas de vacinação, surtos epidemiológicos) podem gerar súbitos e intensos 

picos de agendamentos e comunicações. 

Ademais, a flexibilidade do sistema foi confirmada pela modularidade de sua 

estrutura, facilitando a incorporação de novos canais de comunicação. Embora o foco 

inicial recaia no e-mail via SMTP, a lógica baseada em tarefas do Celery e a abstração do 

serviço de envio de mensagens permitem extensões para outros canais, como WhatsApp 

(via Twilio ou API oficial), SMS ou notificações push, com alterações mínimas na camada 

de agendamento central. Isso seria alcançado através da implementação de novos Celery 

tasks que encapsulam a lógica de envio para cada provedor, utilizando um padrão de 

adaptador (Adapter Pattern) para desacoplar a lógica de negócio dos detalhes de 

implementação de cada canal. Essa adaptabilidade posiciona o Remote Treatment como 

uma plataforma multicanal versátil, preparada para evoluções tecnológicas e demandas 

futuras em telemedicina, alinhando-se a tendências de integração híbrida e 

interoperabilidade em sistemas de saúde digital. 

6. Considerações Finais 

O presente estudo cumpriu integralmente o objetivo geral de conceber e analisar o Remote 

Treatment – Sistema de Agendamento de Mensagens, uma inovação tecnológica 

destinada a aprimorar a comunicação em tratamentos remotos. A síntese dos achados 

demonstra que a orquestração de tecnologias open-source, como Django e Celery, sob a 

égide do Docker e com o suporte de um message broker, culmina em uma arquitetura de 

backend robusta, escalável e confiável, apta a gerenciar envios assíncronos de mensagens 

via e-mail. Essa integração não apenas atende às demandas operacionais de programas de 

saúde digital, mas também exemplifica princípios de engenharia de software aplicados a 

contextos reais, promovendo eficiência, resiliência e conformidade com requisitos de 

segurança e privacidade de dados. 

A contribuição primordial do Remote Treatment reside em sua capacidade de 

mitigar gargalos por meio do processamento assíncrono, assegurando que agendamentos 

em massa não impactem a performance global da aplicação. Ao automatizar 

comunicações proativas, o sistema emerge como uma ferramenta estratégica para reduzir 

absenteísmo, fomentar adesão terapêutica e elevar a qualidade do cuidado ao paciente, 

com implicações diretas para a telemedicina e a gestão de saúde populacional. Em 

essência, trata-se de uma prova de conceito exitosa que pavimenta o caminho para 

avanços em sistemas de comunicação automatizada na saúde, alinhando-se a paradigmas 

emergentes de saúde conectada e personalizada, onde a comunicação eficaz é um pilar 

fundamental. 



Para perspectivas futuras, sugere-se a expansão para validações em ambientes 

clínicos reais, incorporando métricas de impacto (e.g., taxas de adesão pré e pós-

implementação, redução de custos operacionais) e integrações com sistemas de 

prontuário eletrônico (EHR/EMR) para um fluxo de dados mais coeso. A incorporação de 

inteligência artificial, como processamento de linguagem natural (NLP) para análise de 

sentimentos em respostas ou algoritmos de aprendizado de máquina para personalização 

dinâmica de mensagens com base no perfil e histórico do paciente, poderia amplificar o 

valor terapêutico do sistema. Essa evolução poderia ampliar o escopo do trabalho, 

convidando colaborações interdisciplinares entre engenharia de software, saúde pública, 

ciências sociais e ética em inteligência artificial. Em resumo, o Remote Treatment não é 

mero artefato técnico, mas uma ponte para inovações que humanizam o cuidado remoto, 

contribuindo para uma prática de saúde mais inclusiva, eficaz e orientada por dados. 

Referências 

Alfard, M. F. (2024). “Aumentando o desempenho do Django com o aipo”. LinkedIn. 

Disponível em: https://pt.linkedin.com/pulse/boosting-django-performance-celery-

deep-dive-mohammad-fa-alfard-caqhf?tl=pt.  

Dantas, M. C. R. (2016). “Ferramenta digital para agendamento de atendimento médico 

em unidades de saúde 100% SUS”. UFRGS. Disponível em: 

https://lume.ufrgs.br/handle/10183/157919. 

Dantas, M. C. R. (2016). “Sistema de Telemonitoramento para Pacientes com Esclerose 

Lateral Amiotrófica”. Repositório UFRN. Disponível em: 
https://repositorio.ufrn.br/items/b051f221-b19e-4bba-98ea-14e0d993800e. 

Marinho, L. “35 Modelos de Mensagens de Confirmação de Consulta para Clínicas e 

Médicos”. Cliagenda, 2024. Disponível em: https://cliagenda.com/mensagens-de-

confirmacao-de-consulta/. Acesso em: 22 nov. 2025. 

Minha Agenda Virtual (2025) “Plataforma de Agendamento Online”. Mupi Systems. 

Disponível em: https://minhaagendavirtual.com.br/. Acesso em: 22 nov. 2025. 

Mota, N. (2018). “Executando processos em background com Django e Celery”. Medium. 

Disponível em: https://medium.com/luizalabs/executando-processos-em-background-

com-django-e-celery-5ade867e1bf3. 

Oliveira, E. (2022). “Django + Celery: testando sistemas com filas”. dev.to. Disponível 

em: https://dev.to/eduardojm/django-celery-testando-sistemas-com-filas-3e1n. 

Paiva (2018). “SMART: Sistema de Monitoramento e Avaliação do Programa Nacional 

Telessaúde Brasil Redes”. UFRN. Disponível em: 

https://repositorio.ufrn.br/bitstreams/efb498b6-597a-4191-a62d-

12d56ab1458a/download. 

Postal, L., CELUPPI, I. C., LIMA, G. DOS S., FELISBERTO, M., LACERDA, T. C. 

(2021). “Sistema de agendamento online: uma ferramenta do PEC e-SUS APS para 

facilitar o acesso à Atenção Primária no Brasil”. Ciência & Saúde Coletiva, 26. 

Santos, E. (2024). “40 Exemplos de Respostas Rápidas no Whatsapp Para Clínicas”. 

Conclínica. Disponível em: https://conclinica.com.br/respostas-rapidas-no-whatsapp/.  

https://pt.linkedin.com/pulse/boosting-django-performance-celery-deep-dive-mohammad-fa-alfard-caqhf?tl=pt
https://pt.linkedin.com/pulse/boosting-django-performance-celery-deep-dive-mohammad-fa-alfard-caqhf?tl=pt
https://lume.ufrgs.br/handle/10183/157919
https://repositorio.ufrn.br/items/b051f221-b19e-4bba-98ea-14e0d993800e.
https://cliagenda.com/mensagens-de-confirmacao-de-consulta/
https://cliagenda.com/mensagens-de-confirmacao-de-consulta/
https://minhaagendavirtual.com.br/
https://medium.com/luizalabs/executando-processos-em-background-com-django-e-celery-5ade867e1bf3
https://medium.com/luizalabs/executando-processos-em-background-com-django-e-celery-5ade867e1bf3
https://dev.to/eduardojm/django-celery-testando-sistemas-com-filas-3e1n
https://repositorio.ufrn.br/bitstreams/efb498b6-597a-4191-a62d-12d56ab1458a/download
https://repositorio.ufrn.br/bitstreams/efb498b6-597a-4191-a62d-12d56ab1458a/download
https://conclinica.com.br/respostas-rapidas-no-whatsapp/


Valentini, L. (2021). “MedScan: applicazione web per l'identificazione automatica di 

farmaci e la loro condivisione con il medico curante”. Tese de graduação. Disponível 

em: https://morethesis.unimore.it/theses/available/etd-09272021-132958/. 

 

https://morethesis.unimore.it/theses/available/etd-09272021-132958/

