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Resumo

O presente trabalho aborda o estudo das derivadas e suas aplicagoes, enfatizando
seu papel fundamental no calculo diferencial e na andlise da variacao de fungoes. O obje-
tivo principal é compreender os conceitos tedricos das derivadas e explorar suas aplicagoes
em diferentes contextos matematicos. O desenvolvimento do estudo esta estruturado em
trés capitulos, iniciando por Derivadas e Taxas de Variacao, onde sao apresentados os
conceitos de funcao derivada, derivadas de ordem superior e a Regra da Cadeia, além de
suas aplicagoes na derivagao de fungoes compostas, seguindo para Estudo da Variagao
das Fungoes e analisando o comportamento das fungoes por meio do Teorema do Valor
Médio, que estabelece uma relacao fundamental entre a taxa de variacao média e a deri-
vada em um ponto especifico. E por tltimo, serao abordados aplicacoes das derivadas em

diferentes areas.

Palavras-chaves:Derivadas; Taxas de Variacao; Regra da Cadeia; Teorema do

Valor Médio; Célculo Diferencial; Aplicacao de derivadas.



Abstract

This paper addresses the study of derivatives and their applications, emphasizing
their fundamental role in differential calculus and in the analysis of function variation.
The main objective is to understand the theoretical concepts of derivatives and explore
their applications in various mathematical contexts. The study is structured into three
chapters: it begins with Derivatives and Rates of Change, presenting concepts such as
the derivative function, higher-order derivatives, and the Chain Rule, as well as their
applications in differentiating composite functions. It then proceeds to The Study of
Function Variation, analyzing the behavior of functions through the Mean Value Theorem,
which establishes a fundamental relationship between the average rate of change and the
derivative at a specific point. Finally, the work discusses applications of derivatives in

different areas.
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Introducao

O estudo das derivadas é um dos pilares do célculo diferencial, tendo sido desen-
volvido por Newton e Leibniz no século XVII. Desde entao, as derivadas tornaram-se
uma ferramenta fundamental para a andlise de variagoes em fungoes matematicas, permi-
tindo a modelagem de fenomenos naturais, economicos e tecnoldgicos. Segundo Stewart
(2013), a derivada de uma fungdo mede a taxa instantanea de variagdo dessa funcdo em
relacao a sua variavel independente, sendo essencial para entender mudancas em sistemas
dinamicos.

“As derivadas possuem uma ampla gama de aplicagoes, indo desde a deter-
minag¢do de mdximos e minimos em fungoes até a modelagem de fenémenos
fisicos, como a velocidade e a aceleragao de um corpo em movimento (AN-

TON; BIVENS; DAVIS, 2019). "

Para compreender suas propriedades e aplicacoes, este trabalho esta dividido em
trés capitulos principais. No primeiro capitulo, intitulado ”Derivadas”, abordamos a de-
finicao de fungao derivada e derivadas de ordem superior, bem como a Regra da Cadeia,
ferramenta essencial para a derivagdo de fungdes compostas (APOSTOL, 2017). Além
disso, exploramos aplicacoes praticas dessa regra, demonstrando sua importancia na re-
solugao de problemas matematicos complexos.

No segundo capitulo, ”Estudo da Variacao das Funcoes”, analisamos o comporta-
mento das fungoes por meio do Teorema do Valor Médio, um dos resultados fundamentais
do calculo diferencial. Esse teorema estabelece uma relagao entre a taxa de variagao média
de uma funcgao e sua derivada em um ponto especifico, sendo amplamente utilizado em

aplicagbes matematicas e cientificas (SPIVAK, 2018).



No terceiro capitulo, serao trabalhados as derivadas e suas aplicagoes. De forma
clara e objetiva, ¢ demonstrada aplicabilidade na geometria, por meio de situacoes do
cotidiano,bem com préticas na fisica, administracao e economia.

Dessa forma, este trabalho busca aprofundar a compreensao sobre as derivadas,
suas propriedades e aplicagoes, destacando sua relevancia para a matematica e para di-
versas areas do conhecimento. Através da fundamentacao tedrica e exemplos praticos,
pretendemos demonstrar a importancia desse conceito para a analise e modelagem de

fendmenos do mundo real.



Capitulo 1

Derivada

1.1 Derivadas e Taxas de Variacao

O problema de encontrar a reta tangente a uma curva e o problema de encontrar a
velocidade de um objeto envolvem determinar o mesmo tipo de limite. Este tipo especial
de limite é chamado derivada e veremos que ele pode ser interpretado como uma taxa de
variacao tanto nas ciéncias quanto na engenharia.

Se uma curva C' tiver uma equacdo y = f(z) e quisermos encontrar a reta tangente
a C' em um ponto P(a, f(a)), consideramos um ponto préximo Q(z, f(z)), onde = # a, e
calcularmos a inclinagao da reta secante P() :

f(x) — f(a)

mpo =
@ r —a

Qix, fix))

fix)—fla)

Figura 1.1: STEWART, J. Calculo: Volume 1



Entao fazemos () aproximar-se de P ao longo da curva C' ao obrigar x tender a a.
Se my, tender a um nimero m, entao definimos a tangente ¢ como a reta que passa por
P e tem inclinagao m. (Isso implica dizer que a reta tangente é a posigao-limite da reta

secante P(@) quando @) tende a P.

0

Figura 1.2: STEWART, J. Célculo: Volume 1

Definigao 1. A reta tangente a curva y = f(x) em um ponto P(a, f(a)) € a reta

passando por P com a inclina¢ao

@)~ )

r—a T —a

desde que esse limite exista.
Ex. 1. Encontre uma equagdo da reta tangente a pardbola y = x? no ponto P(1,1).

Solucgao 1.

Temos aquia =1 e f(z) = 2%, logo a inclinagdo é

m = lim = lim
z—1 r—1 =1 r—1
—1 1
- DE
r—1 ,1‘—1

Usando a forma ponto-inclinagao da reta, encontramos que uma equagao da reta

tangente em (1,1) é



y—1=2(z—1)ouy=2x—1
A forma ponto-inclina¢do da equagao da reta por um ponto (x,%;) com uma inclinagao
m é:
y— 1y =m(z —z1)

H& outra expressao para a inclinagao da reta tangente que é, as vezes, mais facil de ser

usada. Se h = x — a, entao x = a + h e, assim, a inclinacao da reta secante PQ é:

fla+h) = f(a)
h

me =

Observe que quando x tende a a, h tende a 0 (pois h = x — a ); assim, a expressao para

a inclinagao da reta tangente na Definicao 1 fica

L fath)— i
h—0 h

Ex. 2. Encontre uma equagao da reta tangente a hipérbole y = 3/x no ponto (3,1).
Solucao 2.

Seja f(x) = 3/x. Entdo a inclina¢ao da reta tangente em (3,1) é

fB+h) - fB3)
h



Portanto, uma equagdo da reta tangente no ponto (3,1) é

1
y—1l=-5(-3)

que se simplifica para
r+3y—6=0.

Defini¢ao 2. A derivada de uma fungao f em um nimero a, denotada por f'(a), é

o) — pn £ 1) = F@)

h—0 h

se o limite existir.

Quando x tende a a e escrevermos © = a + h , entao h = x — a e h tendera a 0.
Consequentemente, uma maneira equivalente de enunciar a definicao da derivada, como

vimos na determinacao das retas tangentes, é

) i 1) = 1(@)

r—a T —a

Ex. 3. Encontre a derivada da funcao f(z) = x* — 8z + 9 em um nimero a.
Solucao 3.

Da definicao, temos

F = oS
~ lm [(a+ h)?—8(a+h)+9] — [a* — 8a+ 9]
h—0 h

a’>+2ah+h?>—8a—8h+9—a>+81—9

= Jim h
. 2ah+ h®—8h
= lim
h—0 h

= lim(2a + h —38)
h—0

= 2a—28

10



Definimos a reta tangente a curva y = f(x) no ponto P(a, f(a)) como a reta que
passa em P e tem inclinacao m dada pela Equacao 1 ou 2. Uma vez que, pela definicao
2, i8s0 é 0 mesmo que a derivada f'(a), podemos agora dizer o seguinte:

A reta tangente a y = f(z) em (a, f(a)) é a reta que passa em (a, f(a)), cuja
inclinagao é igual a f'(a), a derivada de f em a.

Se usarmos a forma ponto-inclinacao da equacao de uma reta, poderemos escrever

uma equacao da reta tangente a curva y = f(z) no ponto (a, f(a)):

y— fla) = f'(a)(x — a)

Ex. 4. Encontre uma equacdio da reta tangente a pardbola y = x* — 8x + 9 no ponto

(37 _6)
Solucao 4.

Sabemos que a derivada de f(x) = x* — 8x + 9 no nimero a € f'(a) = 2a — 8. Portanto,
a inclinag¢ao da reta tangente em (3,—6) € f'(3) = 3(3) —8 = 1. Dessa forma, uma

equacao da reta tangente é

y—(—6)=(1)(z—=3) ouy=-9+=z

1.2 Regras de derivagao

Proposicao 1. Seja n # 0 um natural. Sao vdlidas as formulas de derivagao:

3. f(z) = T = fl(x) = Zxnl onde x > 0 sen for par e x # 0 se n for impar
n

11



Demonstragao 1.

" — ™
1. Por defini¢ao f'(z) = limy,_ W Fazendo x+h = t, entdao t — x quando
h — 0. Dai
th — "
/ _ .
filz) = lim——o

= lm[" "+ + "0 4 42"
—x ~~
n parcelas

— \xn_1+$n_2$+$n_3$2+...+Z‘n_i
vV

n parcelas

ou seja f'(x) = na™ L.

2. Novamente por defini¢ao temos

1 1
N (o D LR N C o ) 1
fiz) = Jim h = i h (& + hyran
Por (1) temos que
)" — pn
lim et h) = = na" !,
h—0 h

e como

i 1

im-——=—

h—0 ($ + h)nxn x2n’
resulta:

f'(z) = —na"t— = —nz"" L

3. Pela Definigao (3)



Temos

() = lim Vath- 3z _ lim Vi

h—0 h tsx t—x

Fazendo v = {/t e v = /x (t = © = u — v) resulta:

1
/
xTr) =
Fe) = e
ou seja
1 .
/ = —zn — 1
fiw) =

Ex. 5. Seja f(x) = z*. Calcule.

1. f(z)

2. f(3)
Solucao 5.

1. f(z)=2"= f'(x) = 42", ou seja f'(x) = 42®.

2. Como f'(x) = 423, seque f’(%) = 4(%)3 ou seja, f’(%) = %
Proposicao 2. Sdo vdlidas as formulas de derivagao.

1 f(w) = logy o = f/(x) = 5

2. f(z)=Inz= f(z)=1

3. f(x) =a"= f'(z) =a"Ina

4 f@) =" = fla) = e

13



Proposicao 3. Sdo vdlidas as formulas de derivagao.

1. f(z) = sen(z) = f'(x) = cos(x)

2.
3.
4
5.

6.

f(z) = cos(z) = f'(x) = —sen(z)

fx) =tg(x) = ['(x) = sec*(x)

f(z) = cossec(x) = f'(x) = —cossec(x) - cotg(x)

f(2) = sec(z) = f'(x) = sec(x) - tg(a)

f(x) = cotg(x) = f'(x) = —cossec?(x)

Demonstragao 2.

- sen(x + h) — sen(z)
h—0 h

lim sen(x)cos(h) + cos(x)sen(h) — sen(x)

h—0 h
_ cos(h) — 1 sen(h)
llzlil(l) sen(z) ? + cos(z) A
. cos(h) —1 . sen(h)
sen(x) - }lg% h + cos(x) - }lgr(l) -

sen(x) - 0+ cos(x) - 1

cos(x)

14




o F ) — f(@)

h—0 h

- cos(x + h) — cos(z)
h—0

lim (cos(z) cos(h) — sen(x)sen(h)) — cos(x)
h—0 h

i (Sleos) 1) _ sentasen)

h—0 h h
. cos(h)—1 . sen(h)
cos(zx) - 11111)% : — sen(x) - }lg% n

cos(x) - (0) — sen(x) - (1)

—sen(x)

15




lim
h—0

flx+h) - fx)
h

tg(x + h) — tg(x)

lim
h—0

sen(z +h)  sen(z)
lim cos(x +h)  cos(x)
h—0 h

. sen(x + h) cos(x) — sen(x) cos(x + h)
lim
h—0 h - cos(z + h) cos(z)

. sen((x+h) —x)
lim
h—0 h - cos(z + h) cos(z)

lim sen(h)
h—0 h - cos(x + h) cos(x)

(%L“% Seg(h» | (;lfi% cos( + 1h) cos(x))

(1) (Cos(:l: +E) cos(a:)>

1
cos?(x)

sec?(r)

16



Proposicao 4. Sejam f e g derivdveis em p e seja k uma constante. Entao as fungoes

f +g, kf ef.gsdo derivdveis em p e tém-se
1. (f£9)(p)=f'(p) (D).
2. (kf)(p) =k[f'(p).

8. (f.9)(p)=f(pgp) + ) ().
4. (g/R) (p) = L@@ —glp)- M ()

Demonstracgao 3.

1.
_ lim[f(ﬂf) —fp) | 9(@) = g(p)]
x=p T =P r—p
= ['(p) +4(p)-
(Em palavras: a derivada de uma soma € igual a soma das derivadas das parcelas.)
2.

=k

k)Y (p) = lim M) =R W)

T—p T —7p

_ i F@) ()

= kf'(p), ou seja,
T—=p r—0p

= (kf)'(p) = kf(p).

(Em palavras: a derivada do produto de uma constante por uma fun¢do € igual ao

produto da constante pela derivada da fungdo.)

17



(f.9)(p) = lim f(x)g(x) = f(p)g(p)

z—p r—Dp

_ i F@9(@) — fP)g(2) + fP)9(z) — f(p) ()

z—p r—0p

zop x—p oo —p

= f'(p)gp) + f(p)d ().

Observe que, pelo fato de g ser derivdavel em p, g serd continua em p, e, assim,

lim g(z) = g(p).

T—p

(Em palavras: a derivada do produto de duas fungoes € igual a derivada da primeira

multiplicada pela sequnda mais a primeira multiplicada pela derivada da sequnda).

1.3 Funcao Derivada e Derivadas de Ordem Superior

Sejam f uma fun¢do e A o conjunto dos x para os quais f’(z) existe. A funcao
'+ A — Rdadapor z — f'(z), denomina-se func¢do derivada ou, simplesmente, derivada
de f; diremos, ainda, que f’ é a derivada de 1° ordem de f. A derivada de 1° ordem de
f é também indicada por f(1).
A derivada de f’ denomina-se derivada de 2° ordem de f e é indicada por f™ ou por f(2),

assim, f” (f’)’. De modo analogo, define-se as derivadas de ordens superiores a 2 de f.

Ex. 6. Seja f(x) = 32 — 6x + 1. Determine f, f"ef".

18



Solucao 6.

x) = 9z° — 6, para todo x; assim =
fi(x) = 92% — 6 d im Dy =R
f"(x) = 18z, para todo z; D =R
f"(x) =18, para todo z; DY =R

1.4 Regra da Cadeia para Derivacao de Funcao Com-
posta

Sejam y = f(z)ex = ¢(t) duas fungdes derivaveis com Img C Dy, nosso
objetivo, a seguir, é provar que a composta h(t) = f(g(t)) é derivavel e que vale a regra
da cadeia (1) W'(t) = f'(g9(t))g'(t),t € D,. Antes de passarmos a demonstragao de (1),
vejamos como fica a regra da cadeia na notacao de Leibniz. Temos:

d dx

'(1).
. - =4'(t)

= fla)e

Sendo a composta dada por y = f(g(t)), segue de (1) que

dy

— = f(g(t)) g'(t

o = ') g'(1)

ou

dy .\ :
a f'(x)g'(t), onde x = g(t). Assim,

dy dydm d

dat ~ dedt 0

d_y deve ser calculado em x = ¢(t).
T

Suponhamos y = f(z) derivavel em p, z = ¢(t) derivavel em to, com p = g(to) e Img C Dy.

Seja h(t) = f(g(t)). Vamos provar que
W(to) = f'(9(to))g (to)-
Para isto, consideramos a funcao T dada por
T(z) = f(p)+ f'(p)(z —p).
Observe que o gréfico de T é a reta tangente ao grafico de f, em (p, f(p)). Temos

19



fix)
T(x)

i\

Figura 1.3: GUIDORIZZI. Um curso de calculo Vol.1

f(x) =T(x) + E(x)

(2) f(z) = f(p) = f'(p)(z — p) + E(x),x € Dy

Onde E(z) ¢ o erro que se comete ao aproximar f(x)porT(z). E(z) = p(z)(x—p),z € Dy,

onde lim p(x) = 0 = p(0). Fazendo em (2) x = g(t) e p = g(to) e, em seguida, dividindo
T—p

ambos os membros por t — tg, (t # ty) obtemos:

Temos,

Dai,

Portanto

flg®) — flg(to)) g(t) —gl(to) . E(g())
r— = f'(g(to)) e,

20



1.5 Aplicacoes da Regra da Cadeia

Pelo que vimos na segao anterior, sendo y = f(u) e u = g(z) derivaveis, com

Img C Dy entao a derivada da composta y = f(g(x)) é dada por

W Pl @)

ou — = f'(u)g'(x), onde u = g(x)

ooy dydu
de  dudz

d
onde d_y deve ser calculada em u = g(z).
u

Ex. 7. Calcule a derivada.

1. y=e3®
2. y =sint?
Solucao 7.

1. y=-e", onde u = 3x. Pela regra da cadeia

dy _ dydu
dr ~— dudx
Comod—y = ed—u = 3, resulta
du dz
@— U @— 3z
dx—e '30de—36 .

2. y =sinx, onde x = t2. Pela regra da cadeia

dy _ dydr
dt — dudt

d
Como % = coszx e Ccll—f = 2t, resulta

21



d
d_:g —cosx -2t

ou seja

d
4 — 2t cos t?

dt

Poderiamos, também, ter obtido (le— aplicando diretamente a formula [f(g(t))] =

f((t)d'(t). Veja:

d
d_gtJ =Isin t?]" = sin’ t*(t?)’ = 2t cos t*

22



Capitulo 2

Estudo da Variacao das Funcoes

2.1 Teorema de Rolle

O Teorema de Rolle é um resultado fundamental do Célculo Diferencial e garante,
sob certas condicoes, a existéncia de pelo menos um ponto no interior de um intervalo
onde a derivada de uma funcao se anula. Ele pode ser interpretado geometricamente como

a existéncia de um ponto onde a reta tangente ao grafico da fungao é horizontal.

Teorema 1. Seja f : [a,b] — R continua em [a,b] e diferencidvel em |a,b[, tal que

f(a) = f(b), onde a e b sao alguns nimeros reais. Entao, existe algum ¢ em |a,b| tal que
file)=0

Demonstracao 4. Como f € continua em [a,b]|, pelo Teorema do Valor Extremo, f
atinge um valor mdzimo absoluto e um valor minimo absoluto em [a,b]. Ou seja, existem

x1,x2 € |a,b] tais que:

f(z1) = max{f(z) |z € [a,b]}, [f(22) = min{f(z) |z € [a,b]}.

Como f(a) = f(b), os valores nas extremidades sao iguais. Logo, o mdzximo ou o
minimo de f deve ocorrer em algum ponto ¢ €|a,b[, a menos que f seja constante.
Caso 1: Se f € constante em [a,b], entao f'(x) = 0 para todo x €|a,b[. Neste

caso, o teorema estd provado para qualquer ¢ €|a, b.

23



Caso 2: Se f nao € constante, entao o valor mdximo ou minimo de f ocorre em
algum ponto ¢ €la,b]. Como f € diferencidvel em |a,b| e atinge um extremo local em c,

SeEque que:

f'(c)=0.

Portanto, em ambos os casos, existe ¢ €|a,b| tal que f'(c) = 0.

2.2 Teorema do Valor médio (TVM)
Definicao 3. Seja f uma funcgao que satisfaca as sequintes hipoteses:
1. [ € continua no intervalo fechado [a,b].
2. f € derivdvel no intervalo aberto |a,bl.

Entado, eziste um nimero ¢ €|a, b[ tal que
1 — f(b)=f(a)
fl(c) = b—a

ou, de maneira equivalente,

Antes de demonstrarmos esse teorema, podemos ver que ele é razoavel interpretando-
o geometricamente. As Figuras mostram os pontos A(a, f(a)) e B(b, f(b)) sobre os graficos

de duas fungoes derivaveis. A inclinacao da reta secante AB é

f(b) = f(a)

map = b—a

Uma vez que f'(c) é a inclina¢ao da reta tangente no ponto (c, f(c)), o Teorema
do Valor Médio na forma dada pela Equagao diz que, no minimo, um ponto P(c, f(c))

sobre o grafico onde a inclinacao da reta tangente é igual a inclinagao da reta secante AB.
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Em outras palavras, ha um ponto P onde a reta tangente é paralela a reta secante AB.
(Imagine uma reta paralela a AB, iniciando distante e se movendo paralelamente a ela

mesma até tocar o grafico pela primeira vez.)

Figura 2.1: STEWART, J. Calculo: Volume 1

Demonstracgao 5. Aplicamos o Teorema de Rolle a uma nova fun¢do h definida como a
diferenca entre f e a fungdo cujo grifico é a reta secante AB. Vemos que a equagao da

reta secante AB pode ser escrita como

ou como

B f(b) = f(a)
y=Jfla)+————(@—a)
Assim, como mostrado na Figura:
f(b) — f(a)

Precisamos primeiro verificar que h satisfaz as trés hipoteses do Teorema de Rolle.

1. A fun¢ao h € continua em [a,b], pois € soma de f e de uma fun¢ao polinomial de

primeiro grau, ambas continuas.
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b _
fla) +% (x —a)

fla)

Figura 2.2: STEWART, J. Calculo: Volume 1

2. A fungao h € derivdvel em (a,b) pois tanto f quanto a fungdao polinomial de primeiro

grau sao derivaveis. De fato, podemos calcular h':

f(b) = f(a)

Wiw) = o) - L2

(Observe que f(a) e [f(b) — f(a)]/(b— a) sao constantes.)

3.
(a) = fla) ~ fa) - IO IOy gy~
) Sl

Portanto, h(a) = h(b).

Uma vez que h satisfaz as hipoteses do Teorema de Rolle, esse teorema afirma que

existe um numero ¢ € (a,b) tal que h'(c) = 0. Portanto,

0= h/(C) _ f,(C) _ f(b;):i(&)
g - 0=
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2.3 Intervalos de Crescimento e de Decrescimento
Como consequéncia do TVM temos o seguinte teorema.

Teorema 2. Seja f continua no intervalo I.
a) Se f'(x) > 0 para todo x interior a I, entdo f serd estritamente crescente em 1.

b) Se f'(x) <0 para todo x interior a I, entdo f serd estritamente crescente em I.
Demonstragao 6.

a) Precisamos provar que quaisquer que sejam s et em I, s <t = f(s) < f(t). Sejam,

entao, s et em I, com s < t.

—t

j‘ % ¢ !
Da hipdtese, seque que f € continua em [s,t] e derivavel em |s,t] ; pelo TVM existe & €
|s,t[ tal que
f) = f(s) = f(@)(t =)
De f'(z) > 0, pois T estd no interior de I e det — s >0 seque
J(&) = f(s) >0 ou f(s) < f(t)
Portanto,

Vs,tel s<t= f(s)<f(t)

Ex. 8. Determine os intervalos de crescimento e de descrescimento de f(x) = x® —22% +

x + 2. Esboge o grifico.

Solugao 8.
f(z) =3z —4z + 1
) 1
3x —433—1—120@33210113:25
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Entao,

1
>Oem]—oo,§[eem]1,+oo[

f'(z)

(variagdo do
sinalde f’)

Como f é continua, segue do teorema anterior que

f € estritamente crescente em | — oo, §] e em |1, 4+00]

f ¢ estritamente decrescente em [5’ 1]

/ \ /

W=

Antes de esbocar o grdfico de f vamos calcular os limites de f para x — +o00 e
r — —00.

lim [2° —22°4+2+2] = lim 2°[1-=+ =+
@400 x  x? a3

T—r+00

lim [2° — 22 + 24 2] = +o0

T—r—+00
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2.4 Concavidade e Pontos de Inflexao

Seja f derivavel no intervalo aberto I e seja p um ponto de I. A reta tangente em

(p, f(p)) ao gréfico de f é

y—fp)=Fp(x—p) ou y=flp)+f®(@—p).

Deste modo, a reta tangente em (p, f(p)) é o grafico da funcao T dada por

T(x) = f(p) + f'(p)(x —p).

Definicao 4. Dizemos que f tem a concavidade para cima no intervalo aberto I se

f(x) > T(x)

quaisquer que sejam x e p em I, com x # p.

=Y

Figura 2.3: GUIDORIZZI. Um curso de calculo Vol.1
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Definicao 5. Dizemos que f tem a concavidade para baixo no intervalo aberto I se
flx) <T(x)

quaisquer que sejam x e p em I, com x # p.

Definicao 6. Sejam f uma funcao e p € Dy, com f continua em p. Dizemos que p é

ponto de inflexdao de f se existirem nimeros reais a e b, com p € |a,b|C Dy, tal que f

tenha concavidades com denominagoes contrdrias em |a,p[ e em |p,bl[.

v
N

oY

! |

|

: 5 f
A .

P P X

Z
7

p € ponto de inflexao de f
p € ponto de inflexao de f

. (ponto de inflexao horizontal)
(ponto de inflexao obliquo)

Teorema 3. Seja f uma funcao que admite derivada até a 2° ordem no intervalo aberto

I.

a) Se f"(x) >0 em I, entao f terd a concavidade para cima em I.

b) Se f"(x) <0 em I, entdo [ terd a concavidade para baizo em I.
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Demonstracao 7.

a) Seja p um real qualquer em I. Precisamos provar que, para todo x € I, x # p,
fz) > T(z)

em que T(z) = f(p) + ['(p)(z = p).

Consideremos a funcao g(x) = f(x) —T(z), x € I; vamos provar que g(x) > 0 para

todo x € I, x # p.

Temos:
g'(x) = f'(x) = T'(x)
T'(x) = f'(p)
Figura 2.4: GUIDORIZZI. Um curso de calculo Vol.1
dat

g (z) = f'(z)— f'(p), v €I

Como f'(z) > 0 em I, seque que f’ € estritamente crescente em I. Entao,

g (x) >0 parax>p

g (x) <0 parax<p
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Segue que g € estritamente decrescente em |a,p|C I e estritamente crescente em

Ip,b[C I, pois ¢'(x) # 0. Como g(p) =0, o resultado
g(z) >0
para todo x € I, x # p.

b) Andlogo.

Ex. 9. Seja f(x) = e /2 Estude f com relacdo ¢ concavidade e determine os pontos

de inflexao.

Solugao 9.

fllw) = —pe 2
F(w) = (o = 1) e

Com e=™/2 > () para todo x, o sinal de f"(x) é o mesmo que o de x? — 1.

r ! - _ " * (variacdo do
-1 1 sinal de f ")
f Y . n . U (concavidade
-1 j_ de )

f'(x) >0 em]—o0,—1[UJ1l,+o0]

() <0 em]—1,1]

Entao,
f temconcavidade para cimaem| — oo, —1[eem |1, +o0|
f temconcavidade parabaizoem| — 1,1]

Pontos de inflexao: v = —1, x = 1.

Ex. 10. Esboce o grdfico de f(z) = e/,
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Solucao 10.

Definicao 7. Uma funcao f tem mdximo absoluto (ou mdximo global) em c se
f(e) > f(x) para todo x em D, onde D é o dominio de f. O nimero f(c) é chamado
valor mdximo de f em D. Analogamente, f tem um minimo absoluto em c se
fle) < f(z) para todo x em D, e o nimero f(c) é denominado valor minimo de f em

D. Os valores mdzimo e minimo de f sao chamados valores extremos de f.

A figura abaixo mostra o grafico de uma fungao f com um méaximo absoluto em
d e um minimo absoluto em a. Observe que (d, f(d)) é o ponto mais alto do gréfico,

enquanto (a, f(a)) é o ponto mais baixo.

yll

Figura 2.5: STEWART, J. Célculo: Volume 1

Na Figura acima, se considerarmos somente os valores de x préximos de b [por
exemplo, se restringirmos nossa atengao ao intervalo (a,c)|, entdo f(b) é o maior desses

valores de f(x) e é chamado valor mdzimo local de f. Da mesma forma, f(c) é denominado
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valor minimo local de f, pois f(c) < f(x) para z nas proximidades de ¢ [no intervalo (b, d),

por exemplo]. A func¢ao f tem também um minimo local em e. Em geral, temos a seguinte

definicao.

Defini¢ao 8. Uma funcao f tem um mdzximo local (ou mdximo relativo) em c se
f(e) > f(x) quando x estiver nas prozimidades de c. Isso significa que f(c) > f(x)
para todo x em algum intervalo aberto contendo c. Analogamente, f tem um minimo

local em ¢ se f(c) < f(x) quando x estiver préximo de c.
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Capitulo 3

Derivadas e Aplicacoes

O estudo das derivadas possui uma ampla variedade de aplicagoes praticas e é
essencial para compreender e resolver problemas que envolvem taxas de variacao. Entre as
aplicagoes mais conhecidas estd a otimizacao, que consiste em encontrar valores maximos e
minimos de fungoes, uma técnica fundamental para determinar solugoes ideais em diversos
contextos.

As derivadas sao amplamente utilizadas em &dreas como a Fisica, para descrever
movimentos e forcas; na Economia, para analisar custos, receitas e lucros; na Engenharia,
no dimensionamento de estruturas e controle de sistemas; na Biologia, para modelar
o crescimento populacional ou a velocidade de reagoes quimicas; e até mesmo na area
de Tecnologia da Informacao, na criagao de algoritmos de aprendizado de maquina e
processamento de sinais.

Por isso, o estudo das derivadas nao apenas integra a base do calculo diferencial,
mas também se revela uma ferramenta poderosa para lidar com problemas concretos em

diferentes campos do conhecimento. Aqui estao alguns exemplos praticos:

1. Reduc¢ao do consumo de materiais: Determinar a quantidade minima de material

necessaria para fabricar um produto.

2. Aumento do lucro: Analisar como as despesas podem ser ajustadas para maximizar

os lucros.
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3. Maximizacao de areas: Calcular a maior drea possivel em relagao a um perimetro

fixo.

4. Eficiéncia na produgao industrial: Encontrar a melhor forma de organizar processos

para diminuir o tempo de produgao.

Esses exemplos demonstram como as derivadas sao ferramentas essenciais para a tomada

de decisOes em véarias areas.

3.1 Aplicacoes na Geometria

Aplicacao 1. Um retangulo estd posicionado com sua base no eixo x, tendo seus vértices
' ibolay = 16— l[éad 10 tangulo pode al
superiores na pardbola y x°. Qual € a drea mdzima que esse retangulo pode alcangar

e quais sao suas dimensoes?

Resolucao 1.

1. Dimensoes do Retangulo: - Os vértices superiores do retingulo estio em (x,y) e

(—x,y). Assim, a largura é 2x e a altura é y = 16 — 2.

2. Area do Retangulo: a drea A € dada por:

A =22(16 — 2%) = 32z — 22°

3. Maximizando a Area: Derivando A em relagao a x e igualando a zero:

dA 32 16 16
S =32-622=0 = 62°=32 = ’=2" —= ’=" — x=4/—~231
dx 6 3 3

Para obter um nimero inteiro, vamos considerar x = 2.

4. Calculando a Altura: - Substituindo x = 2 na equacdo da pardbola:

y=16—(2)>=16—4 = 12
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5. Dimensoes do Retangulo: A largura é 2x =2 -2 =4 e a altura é y = 12.

6. Area Mdzima: A drea mdzima é:
A =22(16 — 2%) = 2(2)(12) = 48
Portanto, a maior drea que o retangulo pode ter é 48 unidades quadradas, com dimensoes

de largura 4 unidades e altura 12 unidades.

Aplicagao 2. Uma drea retangular em uma fazenda sera cercada por um rio e nos outros
trés lados por uma cerca elétrica feita de um fio. Com 1000 m de fio a disposi¢ao, qual €

a maior drea que vocé pode cercar e quais $ao suas dimensoes?

Resolugao 2.
Vamos usar as varidveis L para o comprimento da drea retangular(paralelo ao rio) e W
para a largura da drea retangular (perpendicular ao Tio).

Sabemos que a drea a ser cercada € dada por:
A=L-W

A quantidade total de arame disponivel para cercar os trés lados da drea (dois lados de lar-

gura e um lado de comprimento) é 1000 metros. Entdo, temos a equagdo para o perimetro:
2W + L = 1000

Agora, queremos maximizar a drea A = L - W, mas precisamos expressar L em

termos de W para poder derivar. Da equagdao do perimetro, isolamos L:
L =1000 — 2W
Substituimos essa expressao de L na formula da drea:

A(W) = (1000 — 2W) - W
A(W) = 1000W — 22

Agora, para encontrar o valor de W que mazimiza a drea, derivamos A(W) em

relagao a W :
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dA
— = 1000 — 4
¥ 000 — 4W

tqualamos a derivada a zero para encontrar o ponto critico:

1000 —4W =0
4W = 1000
W =250

Agora que temos W = 250, substituimos esse valor na equagao do perimetro para encontrar

L:
L =1000 — 2250 = 500

Entao, as dimensoes que maximizam a drea sao comprimento L = 500 metros e largura

W = 250 metros. Logo, a drea mdzima é A = 500 - 250 = 125.000m2.

Aplicagao 3. Um retangulo tem sua base mo eixo x e seus dois vértices superiores na
pardbola y = 12722, Qual a maior drea que esse retdngulo pode ter? Quais sio suas

dimensoes?

Resolugao 3. Dado y = 12 - 2 temos que a drea do retangulo é A = 2xy = 2x(12 - 2?),

onde 0 < x < /12. Fazendo A'(z) =0, obtemos

62’ 4+24=0=>zx=20uzx=—2
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Como x = —2 néo esta no dominio, e desde que A(0) = 0 e A(v/12) = 0, concluimos
que A(2) = 32 unidades quadradas é a drea méxima. As dimensoes sdo 4 unidades por 8

unidades.

Aplicagao 4. (O melhor esquema para a cerca). Uma drea retangular em uma fazenda
serd cercada por um rio e nos outros trés lados por uma cerca elétrica feita de um fio.

Com 800m de fio a disposicdo, qual € a maior drea que vocé pode cercar e quais SG0 Suas

dimensoes?
Resolucao 4.

Rio

800 — 2z

A drea € A(z) = x(800 - 2x), onde 0 < x < 400. Resolvendo A'(x) =800 -4x =0= x =
200. Com A(0) = A(400) = 0, a drea mdzima é A(200) = 80,000m?, As dimensdes sio
de 200m por 400m.

Aplicacao 5. Determine o volume do maior cone de revolucao que pode ser inscrito em

uma esfera de rato R = 3.

Resolucgao 5.

Considere o cone de revolucao C, inscrito na esfera de raio 3. O volume de C' é

dado por

onde r € o raio da base e h € a altura de C.
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O volume do cone é

1
V= gﬂ'TQh,

onder =+/9—y?>eh=y+3, ondey € como na figura 6. Assim,

™

V(y) 3

T
9-y)(y+3) = 327+ 9y - 3y° —y°)

e, portanto,

™

5 (90— 6y — 3y') =w(1—y)(3 —y).

V'(y)

Os pontos criticos sao —3 e 1, mas —3 nao estd no dominio. Como
1 ™
V(1) = 2(-6 - 6(1)) <0,

entao em y = 1 temos o volume maximo de

unidades cubicas.

3.2 Aplicacoes na Fisica

Aplicagao 6. Jane estd em um barco a remo a 3km da costa e deseja chegar a uma cidade
litoranea que estd a 10km em linha reta do ponto (na costa) mais prozimo do barco. Ela
rema a 3km/h e caminha a 8km/h. Onde ela deve aportar para chegar a cidade no menor

tempo possivel?

Resolucao 6.

Dados:

Jane rema: 3km/h
Jane caminha: 8km/h

Objetivo minimizar a varidvel tempo.
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Costa

Ci-:l'adc

Do problema obtemos f,

3 1 8
f(a) = (9 +3:z;2)2 N 108—1:
fa) = 5O+ (20) - ¢
f@) =3 <= 20—

Agora, fazendo f'(x) =0 obtemos:

x 1 x 1

VorZ 8 T3t 8
= 82 =3V + 22
= 642% = 9(9 + 2?)
= 642% = 81 + 927

= 551% = 81
9
=>r=t—
V55
Descartemos o valor negativo, pois nao pertence ao dominio de f. Aplicando em

f os pontos criticos, o ponto inicial e ponto final, obtemos:
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9
0) ~ 2,25km, ) ~216km e f(10) ~ 348km
7(0) f( @) 7(10)

9

Jane deveria aportar seu barco na costa 755 km a partir do ponto mais prézimo de seu

barco.

Aplicagao 7. Movimento vertical. A altura de um objeto que se desloca verticalmente é

dada por
h = —4t* 4 24t + 28
com h em metros t em sequndos. Determine:

1. A wvelocidade do objeto quando t = 0.
2. Sua altura mdxima e quando esta ocorre.

3. Sua velocidade quando h = 0.

Resolucgao 7.

1. h(t) = —4t* + 24t + 28 = v(t) = W'(t) = =8t +24. Em t = 0, a velocidade é
v(0) =24 m/s.

2. A altura mdzima ocorre quando v(t) = 0, isto é, quando t = 3. A altura mdzima é

h(3) = 64 metros e ocorre em t = 3 sequndos.

3. Observe que h(t) = —4t* 4+ 24t +28 = —4(t +1)(t — 7), entao h = 0 quando t = —1
out = 7. Escolhendo o valor positivo de t, como v(t) = W' (t), a velocidade quando

h=0 €év(7)=—-32m/s.

Aplicagao 8. O muro de § pés da figura a sequir estd a 27 pés do edificio. Determine o
comprimento da viga mais curta para alcancar o edificio, apoitado no solo do lado esquerdo

do muro.
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Edificio

Viga [, h
Muro
8pés
x 2Tpés
Resolugao 8.
Tem08§: h =>h:8+@;
r x4 27 x

216

2
27)2
x) + (z + 27)2,

L(z) = \/h2 + (z 4+ 27)2 = \/(8+

quando x > 0. Note que L(x) é minimizado quando

f(z) = (8 + 2%)2 + (z +27)?

21 21
¢ minimizado. Resolvendo f'(x) =0 = f'(x) =2 (8 + ?6) (—x—26> +2(z+27) =0,

obtemos

1728
(x +27) <1— 5 ) =0=2=-27 oux =12,
x
em x = —27 nao € aceitdvel, pois a distancia nunca € negativa, para r = 12 temos

o comprimento mdzimo de L(x). Logo,
L(12) = V2197 ~ 46.87 pés.

Aplicacao 9. Em cinemdtica, a posicao de uma particula de massa m pode ser deter-

minada a cada instante de tempo t, a equacao que produz as informagoes da posicao em

fungao do tempo é chamada de equagdo hordria da posicio (ALMEIDA et al., 2011).
Uma particula que se desloca de uma certa posicao Sy mo instante ty até uma

posicao S em t, define a grandeza chamada de velocidade escalar média dada por
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_AS_S-5
At t—ty]

Um

onde AS e At sdo as variagoes da posicao e do tempo, respectivamente.
Por outro lado, a velocidade escalar no instante t = tg € dada por
AS S -5

_ / _ 1 — —h
v(to) = S'(to) = Aim At tlgg) t—to

3.3 Aplicacoes a Administracao e a Economia

Aplicacao 10. Considere C(z), a func¢do custo, for o custo da produ¢do de x unidades
de certo produto, entdo o custo marginal € a tara de variagcao de C' em relagdao a x. Em
outras palavras, a fungao de custo marginal é a derivada, C' , da funcao custo.

Vamos considerar agora o marketing. Seja p(x) o preco por unidade que a com-
panhia pode cobrar se ela vender x unidades. Entdo, p é chamada fun¢ao demanda (ou
fungdo prego) e esperariamos que ela fosse uma fungao decrescente de x. Se x unidades

forem vendidas e o preco por unidade for p(x), entao a receita total serd
R(x) = zp(z)

e R é chamada funcgao receita. A derivada R' da fung¢do receita é chamada fungao
receita marginal e € a tara de variacao da receita com relagao ao niumero de unidades

vendidas. Se x unidades forem vendidas, entdo o lucro total serd

e P € chamada funcao lucro. A fungao lucro marginal € P’ , a derivada da fungao

lucro.

Aplicacao 11. Uma loja tem vendido 200 aparelhos reprodutores de Blu-ray por semana
a $ 350 cada. Uma pesquisa de mercado indicou que para cada § 10 de desconto oferecido
aos compradores, o numero de unidades vendidas aumenta 20 por semana. Encontre a
funcao demanda e a funcao receita. Qual o desconto que a loja deveria oferecer para

mazimizar sua receita?
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Solugao 11. Se x for o numero de reprodutores de Blu-ray vendidos por semana, entdo o
aumento semanal nas vendas serd x — 200. Para cada aumento de 20 unidades vendidas,

o preco cai em $10. Portanto, para cada unidade adicional vendida, o decréscimo no

preco serd

e a funcao demanda serd

10 1 1
p(z) = 350 50 (x —200) = 350 5 (x —200) = 450 5%

A funcao receita €
1 1,
R(z) =z - p(x) = z(450 — 53?) = 450x — 2%

Como R'(x) = 450 — x, vemos que R'(x) = 0 quando x = 450. Este valor de z dd
um mdximo absoluto pelo Teste da Primeira Derivada (ou simplesmente observando que

o grafico de R é uma pardbola que abre para baizo). O prego correspondente é
1
p(450) = 450 — 5(450) =450 — 225 = 225

e o desconto €

350 — 225 =125

Portanto, para mazximizar a receita, a loja deveria oferecer um desconto de $125.
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