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JOSÉ ARIMATÉA DA SILVA FILHO

Teresina - 2025



JOSÉ ARIMATÉA DA SILVA FILHO

Trabalho de conclusão de curso:

Sobre Derivadas e Aplicações

Trabalho de conclusão de curso à Coordenação
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Universidade Estadual do Piaúı, como requisito
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Resumo

O presente trabalho aborda o estudo das derivadas e suas aplicações, enfatizando

seu papel fundamental no cálculo diferencial e na análise da variação de funções. O obje-

tivo principal é compreender os conceitos teóricos das derivadas e explorar suas aplicações

em diferentes contextos matemáticos. O desenvolvimento do estudo está estruturado em

três caṕıtulos, iniciando por Derivadas e Taxas de Variação, onde são apresentados os

conceitos de função derivada, derivadas de ordem superior e a Regra da Cadeia, além de

suas aplicações na derivação de funções compostas, seguindo para Estudo da Variação

das Funções e analisando o comportamento das funções por meio do Teorema do Valor

Médio, que estabelece uma relação fundamental entre a taxa de variação média e a deri-

vada em um ponto espećıfico. E por último, serão abordados aplicações das derivadas em

diferentes áreas.

Palavras-chaves:Derivadas; Taxas de Variação; Regra da Cadeia; Teorema do

Valor Médio; Cálculo Diferencial; Aplicação de derivadas.
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Abstract

This paper addresses the study of derivatives and their applications, emphasizing

their fundamental role in differential calculus and in the analysis of function variation.

The main objective is to understand the theoretical concepts of derivatives and explore

their applications in various mathematical contexts. The study is structured into three

chapters: it begins with Derivatives and Rates of Change, presenting concepts such as

the derivative function, higher-order derivatives, and the Chain Rule, as well as their

applications in differentiating composite functions. It then proceeds to The Study of

Function Variation, analyzing the behavior of functions through the Mean Value Theorem,

which establishes a fundamental relationship between the average rate of change and the

derivative at a specific point. Finally, the work discusses applications of derivatives in

different areas.
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Introdução

O estudo das derivadas é um dos pilares do cálculo diferencial, tendo sido desen-

volvido por Newton e Leibniz no século XVII. Desde então, as derivadas tornaram-se

uma ferramenta fundamental para a análise de variações em funções matemáticas, permi-

tindo a modelagem de fenômenos naturais, econômicos e tecnológicos. Segundo Stewart

(2013), a derivada de uma função mede a taxa instantânea de variação dessa função em

relação à sua variável independente, sendo essencial para entender mudanças em sistemas

dinâmicos.

“As derivadas possuem uma ampla gama de aplicações, indo desde a deter-

minação de máximos e mı́nimos em funções até a modelagem de fenômenos

f́ısicos, como a velocidade e a aceleração de um corpo em movimento (AN-

TON; BIVENS; DAVIS, 2019). ”

Para compreender suas propriedades e aplicações, este trabalho está dividido em

três caṕıtulos principais. No primeiro caṕıtulo, intitulado ”Derivadas”, abordamos a de-

finição de função derivada e derivadas de ordem superior, bem como a Regra da Cadeia,

ferramenta essencial para a derivação de funções compostas (APOSTOL, 2017). Além

disso, exploramos aplicações práticas dessa regra, demonstrando sua importância na re-

solução de problemas matemáticos complexos.

No segundo caṕıtulo, ”Estudo da Variação das Funções”, analisamos o comporta-

mento das funções por meio do Teorema do Valor Médio, um dos resultados fundamentais

do cálculo diferencial. Esse teorema estabelece uma relação entre a taxa de variação média

de uma função e sua derivada em um ponto espećıfico, sendo amplamente utilizado em

aplicações matemáticas e cient́ıficas (SPIVAK, 2018).
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No terceiro caṕıtulo, serão trabalhados as derivadas e suas aplicações. De forma

clara e objetiva, é demonstrada aplicabilidade na geometria, por meio de situações do

cotidiano,bem com práticas na f́ısica, administração e economia.

Dessa forma, este trabalho busca aprofundar a compreensão sobre as derivadas,

suas propriedades e aplicações, destacando sua relevância para a matemática e para di-

versas áreas do conhecimento. Através da fundamentação teórica e exemplos práticos,

pretendemos demonstrar a importância desse conceito para a análise e modelagem de

fenômenos do mundo real.



Caṕıtulo 1

Derivada

1.1 Derivadas e Taxas de Variação

O problema de encontrar a reta tangente a uma curva e o problema de encontrar a

velocidade de um objeto envolvem determinar o mesmo tipo de limite. Este tipo especial

de limite é chamado derivada e veremos que ele pode ser interpretado como uma taxa de

variação tanto nas ciências quanto na engenharia.

Se uma curva C tiver uma equação y = f(x) e quisermos encontrar a reta tangente

a C em um ponto P (a, f(a)), consideramos um ponto próximo Q(x, f(x)), onde x ̸= a, e

calcularmos a inclinação da reta secante PQ :

mPQ =
f(x)− f(a)

x− a

Figura 1.1: STEWART, J. Cálculo: Volume 1
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Então fazemos Q aproximar-se de P ao longo da curva C ao obrigar x tender a a.

Se mpq tender a um número m, então definimos a tangente t como a reta que passa por

P e tem inclinação m. (Isso implica dizer que a reta tangente é a posição-limite da reta

secante PQ quando Q tende a P .

Figura 1.2: STEWART, J. Cálculo: Volume 1

Definição 1. A reta tangente à curva y = f(x) em um ponto P (a, f(a)) é a reta

passando por P com a inclinação

m = lim
x→a

f(x)− f(a)

x− a

desde que esse limite exista.

Ex. 1. Encontre uma equação da reta tangente à parábola y = x2 no ponto P (1,1).

Solução 1.

Temos aqui a = 1 e f(x) = x2, logo a inclinação é

m = lim
x→1

f(x)− f(1)

x− 1
= lim

x→1

x2 − 1

x− 1

= lim
x→1

(x− 1)(x+ 1)

x− 1

= lim
x→1

= (x+ 1) = 1 + 1 = 2.

Usando a forma ponto-inclinação da reta, encontramos que uma equação da reta

tangente em (1, 1) é
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y − 1 = 2(x− 1) ou y = 2x− 1

A forma ponto-inclinação da equação da reta por um ponto (x1, y1) com uma inclinação

m é:

y − y1 = m(x− x1)

Há outra expressão para a inclinação da reta tangente que é, às vezes, mais fácil de ser

usada. Se h = x− a, então x = a+ h e, assim, a inclinação da reta secante PQ é:

mPQ =
f(a+ h)− f(a)

h

Observe que quando x tende a a, h tende a 0 (pois h = x− a ); assim, a expressão para

a inclinação da reta tangente na Definição 1 fica

m = lim
h→0

f(a+ h)− f(a)

h

Ex. 2. Encontre uma equação da reta tangente à hipérbole y = 3/x no ponto (3, 1).

Solução 2.

Seja f(x) = 3/x. Então a inclinação da reta tangente em (3, 1) é

m = lim
h→0

f(3 + h)− f(3)

h

= lim
h→0

3

3 + h
− 1

h

= lim
h→0

3− (3 + h)

3 + h
h

= lim
h→0

−h

h(3 + h)

= lim
h→0

− 1

3 + h

= −1
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Portanto, uma equação da reta tangente no ponto (3,1) é

y − 1 = −1

3
(x− 3)

que se simplifica para

x+ 3y − 6 = 0.

Definição 2. A derivada de uma função f em um número a, denotada por f ′(a), é

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

se o limite existir.

Quando x tende a a e escrevermos x = a + h , então h = x − a e h tenderá a 0.

Consequentemente, uma maneira equivalente de enunciar a definição da derivada, como

vimos na determinação das retas tangentes, é

f ′(a) = lim
x→a

f(x)− f(a)

x− a

Ex. 3. Encontre a derivada da função f(x) = x2 − 8x+ 9 em um número a.

Solução 3.

Da definição, temos

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

[(a+ h)2 − 8(a+ h) + 9]− [a2 − 8a+ 9]

h

= lim
h→0

a2 + 2ah+ h2 − 8a− 8h+ 9− a2 + 8a− 9

h

= lim
h→0

2ah+ h2 − 8h

h

= lim
h→0

(2a+ h− 8)

= 2a− 8
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Definimos a reta tangente à curva y = f(x) no ponto P (a, f(a)) como a reta que

passa em P e tem inclinação m dada pela Equação 1 ou 2. Uma vez que, pela definição

2, isso é o mesmo que a derivada f ′(a), podemos agora dizer o seguinte:

A reta tangente a y = f(x) em (a, f(a)) é a reta que passa em (a, f(a)), cuja

inclinação é igual a f ′(a), a derivada de f em a.

Se usarmos a forma ponto-inclinação da equação de uma reta, poderemos escrever

uma equação da reta tangente à curva y = f(x) no ponto (a, f(a)):

y − f(a) = f ′(a)(x− a)

Ex. 4. Encontre uma equação da reta tangente à parábola y = x2 − 8x + 9 no ponto

(3,−6).

Solução 4.

Sabemos que a derivada de f(x) = x2 − 8x+ 9 no número a é f ′(a) = 2a− 8. Portanto,

a inclinação da reta tangente em (3,−6) é f ′(3) = 3(3)− 8 = 1. Dessa forma, uma

equação da reta tangente é

y − (−6) = (1)(x− 3) ou y = −9 + x

1.2 Regras de derivação

Proposição 1. Seja n ̸= 0 um natural. São válidas as fórmulas de derivação:

1. f(x) = xn ⇒ f ′(x) = nxn−1.

2. f(x) = x−n ⇒ f ′(x) = −nx−n−1, x ̸= 0.

3. f(x) = x
1
n ⇒ f ′(x) =

1

n
x

1
n
−1, onde x > 0 se n for par e x ̸= 0 se n for ı́mpar

(n ≥ 2).
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Demonstração 1.

1. Por definição f ′(x) = limh→0
(x+ h)n − xn

h
. Fazendo x+h = t, então t → x quando

h → 0. Dáı

f ′(x) = lim
t→x

tn − xn

t− x

= lim
t→x

[tn−1 + tn−2x+ tn−3x2 + ...+ xn−1︸ ︷︷ ︸
n parcelas

]

= xn−1 + xn−2x+ xn−3x2 + ...+ xn−1︸ ︷︷ ︸
n parcelas

ou seja f ′(x) = nxn−1.

2. Novamente por definição temos

f ′(x) = lim
h→0

1

(x+ h)n
− 1

xn

h
= lim

h→0
−(x+ h)n − xn

h
.

1

(x+ h)nxn

Por (1) temos que

lim
h→0

(x+ h)n − xn

h
= nxn−1,

e como

lim
h→0

1

(x+ h)nxn
=

1

x2n
,

resulta:

f ′(x) = −nxn−1.
1

x2n
= −nx−n−1.

3. Pela Definição (3)

f(x) = x
1
n = n

√
x.
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Temos

f ′(x) = lim
h→0

n
√
x+ h− n

√
x

h
= lim

t→x

n
√
t− n

√
x

t− x

Fazendo u = n
√
t e v = n

√
x (t → x ⇒ u → v) resulta:

f ′(x) = lim
u→v

u− v

un − vn
= lim

u→v

1
un − vn

u− v

=
1

nvn−1

Assim, para x ̸= 0 e x no domı́nio de f .

f ′(x) =
1

n
n
√
xn−1

ou seja

f ′(x) =
1

n
x

1
n − 1.

Ex. 5. Seja f(x) = x4. Calcule.

1. f ’(x)

2. f ’(1
2
)

Solução 5.

1. f(x) = x4 ⇒ f ′(x) = 4x4−1, ou seja f ′(x) = 4x3.

2. Como f ′(x) = 4x3, segue f ′(
1

2
) = 4(

1

2
)3 ou seja, f ′(

1

2
) =

1

2
.

Proposição 2. São válidas as fórmulas de derivação.

1. f(x) = logb x ⇒ f ′(x) = 1
x ln b

2. f(x) = ln x ⇒ f ′(x) = 1
x

3. f(x) = ax ⇒ f ′(x) = ax ln a

4. f(x) = ex ⇒ f ′(x) = ex

13



Proposição 3. São válidas as fórmulas de derivação.

1. f(x) = sen(x) ⇒ f ′(x) = cos(x)

2. f(x) = cos(x) ⇒ f ′(x) = −sen(x)

3. f(x) = tg(x) ⇒ f ′(x) = sec2(x)

4. f(x) = cossec(x) ⇒ f ′(x) = −cossec(x) · cotg(x)

5. f(x) = sec(x) ⇒ f ′(x) = sec(x) · tg(x)

6. f(x) = cotg(x) ⇒ f ′(x) = −cossec2(x)

.

Demonstração 2.

1.

f ′(x) = lim
h→0

sen(x+ h)− sen(x)

h

= lim
h→0

sen(x)cos(h) + cos(x)sen(h)− sen(x)

h

= lim
h→0

[
sen(x)

cos(h)− 1

h
+ cos(x)

sen(h)

h

]

= sen(x) · lim
h→0

cos(h)− 1

h
+ cos(x) · lim

h→0

sen(h)

h

= sen(x) · 0 + cos(x) · 1

= cos(x)
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2.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

cos(x+ h)− cos(x)

h

= lim
h→0

(cos(x) cos(h)− sen(x)sen(h))− cos(x)

h

= lim
h→0

(
cos(x)(cos(h)− 1)

h
− sen(x)sen(h)

h

)

= cos(x) · lim
h→0

cos(h)− 1

h
− sen(x) · lim

h→0

sen(h)

h

= cos(x) · (0)− sen(x) · (1)

= −sen(x)
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3.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

tg(x+ h)− tg(x)

h

= lim
h→0

sen(x+ h)

cos(x+ h)
− sen(x)

cos(x)

h

= lim
h→0

sen(x+ h) cos(x)− sen(x) cos(x+ h)

h · cos(x+ h) cos(x)

= lim
h→0

sen((x+ h)− x)

h · cos(x+ h) cos(x)

= lim
h→0

sen(h)

h · cos(x+ h) cos(x)

=

(
lim
h→0

sen(h)

h

)
·
(
lim
h→0

1

cos(x+ h) cos(x)

)

= (1) ·
(

1

cos(x+ 0) cos(x)

)

=
1

cos2(x)

= sec2(x)
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Proposição 4. Sejam f e g deriváveis em p e seja k uma constante. Então as funções

f + g, kf e f . g são deriváveis em p e têm-se

1. (f ± g)′(p) = f ′(p)± g′(p).

2. (kf)′(p) = kf ′(p).

3. (f.g)′(p) = f ′(p)g(p) + f(p)g′(p).

4. (g/h)′(p) = g′(p)·h(p)−g(p)·h′(p)
[h(p)]2

Demonstração 3.

1.

(f + g)′(p) = lim
x→p

[f(x) + g(x)]− [f(p) + g(p)]

x− p

= lim
x→p

[
f(x)− f(p)

x− p
+

g(x)− g(p)

x− p
]

= f ′(p) + g′(p).

(Em palavras: a derivada de uma soma é igual à soma das derivadas das parcelas.)

2.

(kf)′(p) = lim
x→p

kf(x)− kf(p)

x− p
= k

= lim
x→p

f(x)− f(p)

x− p
= kf ′(p), ou seja,

= (kf)′(p) = kf ′(p).

(Em palavras: a derivada do produto de uma constante por uma função é igual ao

produto da constante pela derivada da função.)

17



3.

(f.g)′(p) = lim
x→p

f(x)g(x)− f(p)g(p)

x− p

= lim
x→p

f(x)g(x)− f(p)g(x) + f(p)g(x)− f(p)f(p)

x− p

= lim
x→p

[
f(x)− f(p)

x− p
.g(x) + f(p).

g(x)− g(p)

x− p
]

= f ′(p)g(p) + f(p)g′(p).

Observe que, pelo fato de g ser derivável em p, g será cont́ınua em p, e, assim,

lim
x→p

g(x) = g(p).

(Em palavras: a derivada do produto de duas funções é igual à derivada da primeira

multiplicada pela segunda mais a primeira multiplicada pela derivada da segunda).

1.3 Função Derivada e Derivadas de Ordem Superior

Sejam f uma função e A o conjunto dos x para os quais f ′(x) existe. A função

f ′ : A → R dada por x → f ′(x), denomina-se função derivada ou, simplesmente, derivada

de f ; diremos, ainda, que f ′ é a derivada de 1° ordem de f . A derivada de 1° ordem de

f é também indicada por f(1).

A derivada de f ′ denomina-se derivada de 2° ordem de f e é indicada por fn ou por f(2),

assim, f ′′ (f ′)′. De modo análogo, define-se as derivadas de ordens superiores a 2 de f .

Ex. 6. Seja f(x) = 3x3 − 6x+ 1. Determine f ′, f ′′ef ′′′.
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Solução 6.

f ′(x) = 9x2 − 6, para todo x; assim D′
f = R

f ′′(x) = 18x, para todo x; D′′
f = R

f ′′′(x) = 18, para todo x; D′′′
f = R

1.4 Regra da Cadeia para Derivação de Função Com-

posta

Sejam y = f(x)e x = g(t) duas funções deriváveis com Img ⊂ Df , nosso

objetivo, a seguir, é provar que a composta h(t) = f(g(t)) é derivável e que vale a regra

da cadeia (1) h′(t) = f ′(g(t))g′(t), t ∈ Dg. Antes de passarmos a demonstração de (1),

vejamos como fica a regra da cadeia na notação de Leibniz. Temos:

dy

dx
= f ′(x) e

dx

dt
= g′(t).

Sendo a composta dada por y = f(g(t)), segue de (1) que

dy

dt
= f ′(g(t)) g′(t)

ou
dy

dt
= f ′(x)g′(t), onde x = g(t). Assim,

dy

dt
=

dy

dx

dx

dt
onde,

dy

dx
deve ser calculado em x = g(t).

Suponhamos y = f(x) derivável em p, x = g(t) derivável em t0, com p = g(t0) e Img ⊂ Df .

Seja h(t) = f(g(t)). Vamos provar que

h′(t0) = f ′(g(t0))g
′(t0).

Para isto, consideramos a função T dada por

T (x) = f(p) + f ′(p)(x− p).

Observe que o gráfico de T é a reta tangente ao gráfico de f , em (p, f(p)). Temos
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Figura 1.3: GUIDORIZZI. Um curso de cálculo Vol.1

f(x) = T (x) + E(x)

ou

(2) f(x)− f(p) = f ′(p)(x− p) + E(x), x ∈ Df

Onde E(x) é o erro que se comete ao aproximar f(x)porT (x). E(x) = p(x)(x−p), x ∈ Df ,

onde lim
x→p

p(x) = 0 = p(0). Fazendo em (2) x = g(t) e p = g(t0) e, em seguida, dividindo

ambos os membros por t− t0, (t ̸= t0) obtemos:

f(g(t))− f(g(t0))

t− t0
= f ′(g(t0))

g(t)− g(t0)

t− t0
+

E(g(t))

t− t0

Temos,

lim
t→t0

p(g(t)) = lim
x→p

p(x) = 0

Dáı,

lim
t→t0

E(g(t))

t− t0
= lim

t→t0
p(g(t)).

g(t)− g(t0)

t− t0
= 0.g′(t0) = 0

Portanto

h′(t0) = lim
t→t0

h(t)− h(to)

t− t0
= lim

t→t0

f(g(t))− f(g(t0))

t− t0
= f ′(g(t0))g

′(t0).
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1.5 Aplicações da Regra da Cadeia

Pelo que vimos na seção anterior, sendo y = f(u) e u = g(x) deriváveis, com

Img ⊂ Df então a derivada da composta y = f(g(x)) é dada por

dy

dx
= f ′(g(x))g′(x)

ou
dy

dx
= f ′(u)g′(x), onde u = g(x)

ou
dy

dx
=

dy

du

du

dx

onde
dy

du
deve ser calculada em u = g(x).

Ex. 7. Calcule a derivada.

1. y = e3x

2. y = sin t2

Solução 7.

1. y = eu, onde u = 3x. Pela regra da cadeia

dy
dx = dy

du
du
dx

Como
dy
du = eu e

du
dx = 3, resulta

dy
dx = eu · 3 ou

dy
dx = 3e3x.

2. y = sin x, onde x = t2. Pela regra da cadeia

dy
dt =

dy
dx

dx
dt

Como
dy
dx = cos x e

dx
dt = 2t, resulta
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dy
dt =cos x · 2t

ou seja

dy
dt = 2t cos t2

Podeŕıamos, também, ter obtido
dy
du aplicando diretamente a fórmula [f(g(t))]′ =

f ′((t))g′(t). Veja:

dy
dt =[sin t2]′ = sin′ t2(t2)′ = 2t cos t2
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Caṕıtulo 2

Estudo da Variação das Funções

2.1 Teorema de Rolle

O Teorema de Rolle é um resultado fundamental do Cálculo Diferencial e garante,

sob certas condições, a existência de pelo menos um ponto no interior de um intervalo

onde a derivada de uma função se anula. Ele pode ser interpretado geometricamente como

a existência de um ponto onde a reta tangente ao gráfico da função é horizontal.

Teorema 1. Seja f : [a, b] −→ R continua em [a, b] e diferenciável em ]a, b[, tal que

f(a) = f(b), onde a e b são alguns números reais. Então, existe algum c em ]a, b[ tal que

f ′(c) = 0.

Demonstração 4. Como f é cont́ınua em [a, b], pelo Teorema do Valor Extremo, f

atinge um valor máximo absoluto e um valor mı́nimo absoluto em [a, b]. Ou seja, existem

x1, x2 ∈ [a, b] tais que:

f(x1) = max{f(x) | x ∈ [a, b]}, f(x2) = min{f(x) | x ∈ [a, b]}.

Como f(a) = f(b), os valores nas extremidades são iguais. Logo, o máximo ou o

mı́nimo de f deve ocorrer em algum ponto c ∈]a, b[, a menos que f seja constante.

Caso 1: Se f é constante em [a, b], então f ′(x) = 0 para todo x ∈]a, b[. Neste

caso, o teorema está provado para qualquer c ∈]a, b[.
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Caso 2: Se f não é constante, então o valor máximo ou mı́nimo de f ocorre em

algum ponto c ∈]a, b[. Como f é diferenciável em ]a, b[ e atinge um extremo local em c,

segue que:

f ′(c) = 0.

Portanto, em ambos os casos, existe c ∈]a, b[ tal que f ′(c) = 0.

2.2 Teorema do Valor médio (TVM)

Definição 3. Seja f uma função que satisfaça as seguintes hipóteses:

1. f é cont́ınua no intervalo fechado [a, b].

2. f é derivável no intervalo aberto ]a, b[.

Então, existe um número c ∈]a, b[ tal que

f ′(c) = f(b)−f(a)
b−a

ou, de maneira equivalente,

f(b)− f(a) = f ′(c)(b− a)

Antes de demonstrarmos esse teorema, podemos ver que ele é razoável interpretando-

o geometricamente. As Figuras mostram os pontos A(a, f(a)) e B(b, f(b)) sobre os gráficos

de duas funções deriváveis. A inclinação da reta secante AB é

mAB =
f(b)− f(a)

b− a

Uma vez que f ′(c) é a inclinação da reta tangente no ponto (c, f(c)), o Teorema

do Valor Médio na forma dada pela Equação diz que, no mı́nimo, um ponto P (c, f(c))

sobre o gráfico onde a inclinação da reta tangente é igual à inclinação da reta secante AB.
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Em outras palavras, há um ponto P onde a reta tangente é paralela à reta secante AB.

(Imagine uma reta paralela a AB, iniciando distante e se movendo paralelamente a ela

mesma até tocar o gráfico pela primeira vez.)

Figura 2.1: STEWART, J. Cálculo: Volume 1

Demonstração 5. Aplicamos o Teorema de Rolle a uma nova função h definida como a

diferença entre f e a função cujo gráfico é a reta secante AB. Vemos que a equação da

reta secante AB pode ser escrita como

y − f(a) =
f(b)− f(a)

b− a
(x− a)

ou como

y = f(a) +
f(b)− f(a)

b− a
(x− a)

Assim, como mostrado na Figura:

h(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)

Precisamos primeiro verificar que h satisfaz as três hipóteses do Teorema de Rolle.

1. A função h é cont́ınua em [a, b], pois é soma de f e de uma função polinomial de

primeiro grau, ambas cont́ınuas.
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Figura 2.2: STEWART, J. Cálculo: Volume 1

2. A função h é derivável em (a, b) pois tanto f quanto a função polinomial de primeiro

grau são deriváveis. De fato, podemos calcular h′:

h′(x) = f ′(x)− f(b)− f(a)

b− a

(Observe que f(a) e [f(b)− f(a)]/(b− a) são constantes.)

3.

h(a) = f(a)− f(a)− f(b)− f(a)

b− a
(a− a) = 0

h(b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a)

= f(b)− f(a)− [f(b)− f(a)] = 0

Portanto, h(a) = h(b).

Uma vez que h satisfaz as hipóteses do Teorema de Rolle, esse teorema afirma que

existe um número c ∈ (a, b) tal que h′(c) = 0. Portanto,

0 = h′(c) = f ′(c)− f(b)− f(a)

b− a

e, assim,

f ′(c) =
f(b)− f(a)

b− a
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2.3 Intervalos de Crescimento e de Decrescimento

Como consequência do TVM temos o seguinte teorema.

Teorema 2. Seja f cont́ınua no intervalo I.

a) Se f ′(x) > 0 para todo x interior a I, então f será estritamente crescente em I.

b) Se f ′(x) < 0 para todo x interior a I, então f será estritamente crescente em I.

Demonstração 6.

a) Precisamos provar que quaisquer que sejam s e t em I, s < t ⇒ f(s) < f(t). Sejam,

então, s e t em I, com s < t.

Da hipótese, segue que f é cont́ınua em [s, t] e derivável em ]s, t[ ; pelo TVM existe x̄ ∈

]s, t[ tal que

f(t)− f(s) = f ′(x̄)(t− s)

De f ′(x̄) > 0, pois x̄ está no interior de I e de t− s > 0 segue

f(t)− f(s) > 0 ou f(s) < f(t)

Portanto,

∀ s, t ∈ I, s < t ⇒ f(s) < f(t)

Ex. 8. Determine os intervalos de crescimento e de descrescimento de f(x) = x3−2x2+

x+ 2. Esboçe o gráfico.

Solução 8.

f ′(x) = 3x2 − 4x+ 1

3x2 − 4x+ 1 = 0 ⇔ x = 1 ou x =
1

3
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Então,


f ′(x) > 0 em ]−∞,

1

3
[ e em ]1,+∞[

f ′(x) < 0 em ]
1

3
, 1[

Como f é cont́ınua, segue do teorema anterior que


f é estritamente crescente em ]−∞,

1

3
] e em ]1,+∞[

f é estritamente decrescente em [
1

3
, 1[

Antes de esboçar o gráfico de f vamos calcular os limites de f para x −→ +∞ e

x −→ −∞.

lim
x→+∞

[x3 − 2x2 + x+ 2] = lim
x→+∞

x3[1− 2

x
+

1

x2
+

2

x3
] = +∞

lim
x→+∞

[x3 − 2x2 + x+ 2] = +∞
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2.4 Concavidade e Pontos de Inflexão

Seja f derivável no intervalo aberto I e seja p um ponto de I. A reta tangente em

(p, f(p)) ao gráfico de f é

y − f(p) = f ′(p)(x− p) ou y = f(p) + f ′(p)(x− p).

Deste modo, a reta tangente em (p, f(p)) é o gráfico da função T dada por

T (x) = f(p) + f ′(p)(x− p).

Definição 4. Dizemos que f tem a concavidade para cima no intervalo aberto I se

f(x) > T (x)

quaisquer que sejam x e p em I, com x ̸= p.

Figura 2.3: GUIDORIZZI. Um curso de cálculo Vol.1
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Definição 5. Dizemos que f tem a concavidade para baixo no intervalo aberto I se

f(x) < T (x)

quaisquer que sejam x e p em I, com x ̸= p.

Definição 6. Sejam f uma função e p ∈ Df , com f cont́ınua em p. Dizemos que p é

ponto de inflexão de f se existirem números reais a e b, com p ∈ ]a, b[⊂ Df , tal que f

tenha concavidades com denominações contrárias em ]a, p[ e em ]p, b[.

p é ponto de inflexão de f

(ponto de inflexão obĺıquo)

p é ponto de inflexão de f

(ponto de inflexão horizontal)

Teorema 3. Seja f uma função que admite derivada até a 2° ordem no intervalo aberto

I.

a) Se f ′′(x) > 0 em I, então f terá a concavidade para cima em I.

b) Se f ′′(x) < 0 em I, então f terá a concavidade para baixo em I.
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Demonstração 7.

a) Seja p um real qualquer em I. Precisamos provar que, para todo x ∈ I, x ̸= p,

f(x) > T (x)

em que T (x) = f(p) + f ′(p)(x− p).

Consideremos a função g(x) = f(x)−T (x), x ∈ I; vamos provar que g(x) > 0 para

todo x ∈ I, x ̸= p.

Temos: g′(x) = f ′(x)− T ′(x)

T ′(x) = f ′(p)

Figura 2.4: GUIDORIZZI. Um curso de cálculo Vol.1

dáı

g′(x) = f ′(x)− f ′(p), x ∈ I.

Como f ′(x) > 0 em I, segue que f ′ é estritamente crescente em I. Então,

g′(x) > 0 para x > p

g′(x) < 0 para x < p
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Segue que g é estritamente decrescente em ]a, p[⊂ I e estritamente crescente em

]p, b[⊂ I, pois g′(x) ̸= 0. Como g(p) = 0, o resultado

g(x) > 0

para todo x ∈ I, x ̸= p.

b) Análogo.

Ex. 9. Seja f(x) = e−x2/2. Estude f com relação à concavidade e determine os pontos

de inflexão.

Solução 9.

f ′(x) = −x e−x2/2

f ′′(x) = (x− 1) e−x2/2

Com e−x2/2 > 0 para todo x, o sinal de f ′′(x) é o mesmo que o de x2 − 1.

f ′′(x) > 0 em ]−∞,−1[∪]1,+∞[

f ′′(x) < 0 em ]− 1, 1[

Então,

f tem concavidade para cima em ]−∞,−1[ e em ]1,+∞[

f tem concavidade para baixo em ]− 1, 1[

Pontos de inflexão: x = −1, x = 1.

Ex. 10. Esboce o gráfico de f(x) = e−x2/2.
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Solução 10.

f ′(x) = −x e−x2/2

Definição 7. Uma função f tem máximo absoluto (ou máximo global) em c se

f(c) ≥ f(x) para todo x em D, onde D é o domı́nio de f . O número f(c) é chamado

valor máximo de f em D. Analogamente, f tem um mı́nimo absoluto em c se

f(c) ≤ f(x) para todo x em D, e o número f(c) é denominado valor mı́nimo de f em

D. Os valores máximo e mı́nimo de f são chamados valores extremos de f .

A figura abaixo mostra o gráfico de uma função f com um máximo absoluto em

d e um mı́nimo absoluto em a. Observe que (d, f(d)) é o ponto mais alto do gráfico,

enquanto (a, f(a)) é o ponto mais baixo.

Figura 2.5: STEWART, J. Cálculo: Volume 1

Na Figura acima, se considerarmos somente os valores de x próximos de b [por

exemplo, se restringirmos nossa atenção ao intervalo (a, c)], então f(b) é o maior desses

valores de f(x) e é chamado valor máximo local de f . Da mesma forma, f(c) é denominado
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valor mı́nimo local de f , pois f(c) ≤ f(x) para x nas proximidades de c [no intervalo (b, d),

por exemplo]. A função f tem também um mı́nimo local em e. Em geral, temos a seguinte

definição.

Definição 8. Uma função f tem um máximo local (ou máximo relativo) em c se

f(c) ≥ f(x) quando x estiver nas proximidades de c. Isso significa que f(c) ≥ f(x)

para todo x em algum intervalo aberto contendo c. Analogamente, f tem um mı́nimo

local em c se f(c) ≤ f(x) quando x estiver próximo de c.
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Caṕıtulo 3

Derivadas e Aplicações

O estudo das derivadas possui uma ampla variedade de aplicações práticas e é

essencial para compreender e resolver problemas que envolvem taxas de variação. Entre as

aplicações mais conhecidas está a otimização, que consiste em encontrar valores máximos e

mı́nimos de funções, uma técnica fundamental para determinar soluções ideais em diversos

contextos.

As derivadas são amplamente utilizadas em áreas como a F́ısica, para descrever

movimentos e forças; na Economia, para analisar custos, receitas e lucros; na Engenharia,

no dimensionamento de estruturas e controle de sistemas; na Biologia, para modelar

o crescimento populacional ou a velocidade de reações qúımicas; e até mesmo na área

de Tecnologia da Informação, na criação de algoritmos de aprendizado de máquina e

processamento de sinais.

Por isso, o estudo das derivadas não apenas integra a base do cálculo diferencial,

mas também se revela uma ferramenta poderosa para lidar com problemas concretos em

diferentes campos do conhecimento. Aqui estão alguns exemplos práticos:

1. Redução do consumo de materiais: Determinar a quantidade mı́nima de material

necessária para fabricar um produto.

2. Aumento do lucro: Analisar como as despesas podem ser ajustadas para maximizar

os lucros.
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3. Maximização de áreas: Calcular a maior área posśıvel em relação a um peŕımetro

fixo.

4. Eficiência na produção industrial: Encontrar a melhor forma de organizar processos

para diminuir o tempo de produção.

Esses exemplos demonstram como as derivadas são ferramentas essenciais para a tomada

de decisões em várias áreas.

3.1 Aplicações na Geometria

Aplicação 1. Um retângulo está posicionado com sua base no eixo x, tendo seus vértices

superiores na parábola y = 16−x2. Qual é a área máxima que esse retângulo pode alcançar

e quais são suas dimensões?

Resolução 1.

1. Dimensões do Retângulo: - Os vértices superiores do retângulo estão em (x, y) e

(−x, y). Assim, a largura é 2x e a altura é y = 16− x2.

2. Área do Retângulo: a área A é dada por:

A = 2x(16− x2) = 32x− 2x3

3. Maximizando a Área: Derivando A em relação a x e igualando a zero:

dA

dx
= 32− 6x2 = 0 =⇒ 6x2 = 32 =⇒ x2 =

32

6
=⇒ x2 =

16

3
=⇒ x =

√
16

3
≈ 2.31

Para obter um número inteiro, vamos considerar x = 2.

4. Calculando a Altura: - Substituindo x = 2 na equação da parábola:

y = 16− (2)2 = 16− 4 = 12
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5. Dimensões do Retângulo: A largura é 2x = 2 · 2 = 4 e a altura é y = 12.

6. Área Máxima: A área máxima é:

A = 2x(16− x2) = 2(2)(12) = 48

Portanto, a maior área que o retângulo pode ter é 48 unidades quadradas, com dimensões

de largura 4 unidades e altura 12 unidades.

Aplicação 2. Uma área retangular em uma fazenda será cercada por um rio e nos outros

três lados por uma cerca elétrica feita de um fio. Com 1000 m de fio à disposição, qual é

a maior área que você pode cercar e quais são suas dimensões?

Resolução 2.

Vamos usar as variáveis L para o comprimento da área retangular(paralelo ao rio) e W

para a largura da área retangular (perpendicular ao rio).

Sabemos que a área a ser cercada é dada por:

A = L ·W

A quantidade total de arame dispońıvel para cercar os três lados da área (dois lados de lar-

gura e um lado de comprimento) é 1000 metros. Então, temos a equação para o peŕımetro:

2W + L = 1000

Agora, queremos maximizar a área A = L · W , mas precisamos expressar L em

termos de W para poder derivar. Da equação do peŕımetro, isolamos L:

L = 1000− 2W

Substitúımos essa expressão de L na fórmula da área:

A(W ) = (1000− 2W ) ·W

A(W ) = 1000W − 2W 2

Agora, para encontrar o valor de W que maximiza a área, derivamos A(W ) em

relação a W :
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dA

dW
= 1000− 4W

igualamos a derivada a zero para encontrar o ponto cŕıtico:

1000− 4W = 0

4W = 1000

W = 250

Agora que temos W = 250, substitúımos esse valor na equação do peŕımetro para encontrar

L:

L = 1000− 2 · 250 = 500

Então, as dimensões que maximizam a área são comprimento L = 500 metros e largura

W = 250 metros. Logo, a área máxima é A = 500 · 250 = 125.000m2.

Aplicação 3. Um retângulo tem sua base no eixo x e seus dois vértices superiores na

parábola y = 12?x2. Qual a maior área que esse retângulo pode ter? Quais são suas

dimensões?

Resolução 3. Dado y = 12 · x2 temos que a área do retângulo é A = 2xy = 2x(12 · x2),

onde 0 ≤ x ≤
√
12. Fazendo A′(x) = 0, obtemos

−6x2 + 24 = 0 ⇒ x = 2 ou x = −2
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Como x = −2 não está no domı́nio, e desde que A(0) = 0 e A(
√
12) = 0, conclúımos

que A(2) = 32 unidades quadradas é a área máxima. As dimensões são 4 unidades por 8

unidades.

Aplicação 4. (O melhor esquema para a cerca). Uma área retangular em uma fazenda

será cercada por um rio e nos outros três lados por uma cerca elétrica feita de um fio.

Com 800m de fio à disposição, qual é a maior área que você pode cercar e quais são suas

dimensões?

Resolução 4.

A área é A(x) = x(800 · 2x), onde 0 ≤ x ≤ 400. Resolvendo A′(x) = 800 · 4x = 0 ⇒ x =

200. Com A(0) = A(400) = 0, a área máxima é A(200) = 80, 000m2, As dimensões são

de 200m por 400m.

Aplicação 5. Determine o volume do maior cone de revolução que pode ser inscrito em

uma esfera de raio R = 3.

Resolução 5.

Considere o cone de revolução C, inscrito na esfera de raio 3. O volume de C é

dado por

V =
1

3
πr2h,

onde r é o raio da base e h é a altura de C.
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O volume do cone é

V =
1

3
πr2h,

onde r =
√

9− y2 e h = y + 3, onde y é como na figura 6. Assim,

V (y) =
π

3
(9− y2)(y + 3) =

π

3
(27 + 9y − 3y2 − y3)

e, portanto,

V ′(y) =
π

3
(9− 6y − 3y2) = π(1− y)(3− y).

Os pontos cŕıticos são −3 e 1, mas −3 não está no domı́nio. Como

V ′′(1) =
π

3
(−6− 6(1)) < 0,

então em y = 1 temos o volume máximo de

V (1) =
π

3
(8)(4) =

32π

3

unidades cúbicas.

3.2 Aplicações na F́ısica

Aplicação 6. Jane está em um barco a remo a 3km da costa e deseja chegar a uma cidade

litorânea que está a 10km em linha reta do ponto (na costa) mais próximo do barco. Ela

rema a 3km/h e caminha a 8km/h. Onde ela deve aportar para chegar a cidade no menor

tempo posśıvel?

Resolução 6.

Dados:

Jane rema: 3km/h

Jane caminha: 8km/h

Objetivo minimizar a variável tempo.
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Do problema obtemos f ,

f(x) =

√
9 + x2

3
+

10− x

8
(0 ≤ x ≤ 10)

f(x) =
(9 + x2)

1
2

3
+

10− x

8

f ′(x) =
1

2
(9 + x2)−

1
2 · (2x)− 1

8

f ′(x) =
1

3
· 1√

9 + x2
· (2x)− 1

8

f ′(x) =
x

3
√
9 + x2

− 1

8

Agora, fazendo f ′(x) = 0 obtemos:

x

3
√
9 + x2

− 1

8
= 0 ⇒ x

3
√
9 + x2

=
1

8

⇒ 8x = 3
√
9 + x2

⇒ 64x2 = 9(9 + x2)

⇒ 64x2 = 81 + 9x2

⇒ 55x2 = 81

⇒ x = ± 9√
55

Descartemos o valor negativo, pois não pertence ao domı́nio de f . Aplicando em

f os pontos cŕıticos, o ponto inicial e ponto final, obtemos:
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f(0) ≈ 2,25km, f

(
9√
55

)
≈ 2,16km e f(10) ≈ 3,48km

Jane deveria aportar seu barco na costa 9√
55

km a partir do ponto mais próximo de seu

barco.

Aplicação 7. Movimento vertical. A altura de um objeto que se desloca verticalmente é

dada por

h = −4t2 + 24t+ 28

com h em metros t em segundos. Determine:

1. A velocidade do objeto quando t = 0.

2. Sua altura máxima e quando esta ocorre.

3. Sua velocidade quando h = 0.

Resolução 7.

1. h(t) = −4t2 + 24t + 28 ⇒ v(t) = h′(t) = −8t + 24. Em t = 0, a velocidade é

v(0) = 24m/s.

2. A altura máxima ocorre quando v(t) = 0, isto é, quando t = 3. A altura máxima é

h(3) = 64 metros e ocorre em t = 3 segundos.

3. Observe que h(t) = −4t2 + 24t+ 28 = −4(t+ 1)(t− 7), então h = 0 quando t = −1

ou t = 7. Escolhendo o valor positivo de t, como v(t) = h′(t), a velocidade quando

h = 0 é v(7) = −32m/s.

Aplicação 8. O muro de 8 pés da figura a seguir está a 27 pés do edif́ıcio. Determine o

comprimento da viga mais curta para alcançar o edif́ıcio, apoiado no solo do lado esquerdo

do muro.
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Resolução 8.

Temos
8

x
=

h

x+ 27
⇒ h = 8 +

216

x
,

L(x) =
√

h2 + (x+ 27)2 =

√(
8 +

216

x

)2

+ (x+ 27)2,

quando x ≥ 0. Note que L(x) é minimizado quando

f(x) =

(
8 +

216

x

)2

+ (x+ 27)2

é minimizado. Resolvendo f ′(x) = 0 ⇒ f ′(x) = 2

(
8 +

216

x

)(
−216

x2

)
+ 2(x + 27) = 0,

obtemos

(x+ 27)

(
1− 1728

x3

)
= 0 ⇒ x = −27 ou x = 12,

em x = −27 não é aceitável, pois a distância nunca é negativa, para x = 12 temos

o comprimento máximo de L(x). Logo,

L(12) =
√
2197 ≈ 46.87 pés.

Aplicação 9. Em cinemática, a posição de uma part́ıcula de massa m pode ser deter-

minada a cada instante de tempo t, a equação que produz as informações da posição em

função do tempo é chamada de equação horária da posição (ALMEIDA et al., 2011).

Uma part́ıcula que se desloca de uma certa posição S0 no instante t0 até uma

posição S em t, define a grandeza chamada de velocidade escalar média dada por
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vm =
∆S

∆t
=

S − S0

t− t0
,

onde ∆S e ∆t são as variações da posição e do tempo, respectivamente.

Por outro lado, a velocidade escalar no instante t = t0 é dada por

v(t0) = S ′(t0) = lim
∆t→0

∆S

∆t
= lim

t→t0

S − S0

t− t0
.

3.3 Aplicações à Administração e à Economia

Aplicação 10. Considere C(x), a função custo, for o custo da produção de x unidades

de certo produto, então o custo marginal é a taxa de variação de C em relação a x. Em

outras palavras, a função de custo marginal é a derivada, C ′ , da função custo.

Vamos considerar agora o marketing. Seja p(x) o preço por unidade que a com-

panhia pode cobrar se ela vender x unidades. Então, p é chamada função demanda (ou

função preço) e esperaŕıamos que ela fosse uma função decrescente de x. Se x unidades

forem vendidas e o preço por unidade for p(x), então a receita total será

R(x) = xp(x)

e R é chamada função receita. A derivada R′ da função receita é chamada função

receita marginal e é a taxa de variação da receita com relação ao número de unidades

vendidas. Se x unidades forem vendidas, então o lucro total será

P (x) = R(x)− C(x)

e P é chamada função lucro. A função lucro marginal é P ′ , a derivada da função

lucro.

Aplicação 11. Uma loja tem vendido 200 aparelhos reprodutores de Blu-ray por semana

a $ 350 cada. Uma pesquisa de mercado indicou que para cada $ 10 de desconto oferecido

aos compradores, o número de unidades vendidas aumenta 20 por semana. Encontre a

função demanda e a função receita. Qual o desconto que a loja deveria oferecer para

maximizar sua receita?
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Solução 11. Se x for o número de reprodutores de Blu-ray vendidos por semana, então o

aumento semanal nas vendas será x− 200. Para cada aumento de 20 unidades vendidas,

o preço cai em $10. Portanto, para cada unidade adicional vendida, o decréscimo no

preço será
10

20
× 1 =

1

2

e a função demanda será

p(x) = 350− 10

20
(x− 200) = 350− 1

2
(x− 200) = 450− 1

2
x

A função receita é

R(x) = x · p(x) = x(450− 1

2
x) = 450x− 1

2
x2

Como R′(x) = 450− x, vemos que R′(x) = 0 quando x = 450. Este valor de x dá

um máximo absoluto pelo Teste da Primeira Derivada (ou simplesmente observando que

o gráfico de R é uma parábola que abre para baixo). O preço correspondente é

p(450) = 450− 1

2
(450) = 450− 225 = 225

e o desconto é

350− 225 = 125

Portanto, para maximizar a receita, a loja deveria oferecer um desconto de $125.

45



Referências Bibliográficas
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