Exportar este item: EndNote BibTex

Use este identificador para citar ou linkar para este item: https://sistemas2.uespi.br/handle/tede/3111
Registro completo de metadados
Campo DCValorIdioma
dc.creatorCardoso, Francisco das Chagas Pereira-
dc.creator.Latteshttp://lattes.cnpq.br/3764704363281886por
dc.contributor.advisor1Almeida, Pedro Marcos de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4917070654832103por
dc.contributor.advisor-co1Freitas, Samya Danielle Lima de-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7961603023838547por
dc.contributor.referee1Almeida, Pedro Marcos de-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4917070654832103por
dc.contributor.referee2Freitas, Samya Danielle Lima de-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7961603023838547por
dc.contributor.referee3Souza, João Sammy Nery de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9712456150235877por
dc.contributor.referee4Castro, Ícaro Fillipe de Araújo-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/0758573905655441por
dc.date.accessioned2026-01-15T12:23:24Z-
dc.date.issued2025-
dc.identifier.citationCARDOSO, Francisco das Chagas Pereira. Prospecção fitoquímica e efeito genoprotetor das cascas da Poincianella bracteosa (TUL.) L.P. Queiroz em células meristemáticas de Allium cepa (L.). 2025. 73 f. Dissertação (Programa de Pós-Graduação em Química) - Universidade Estadual do Piauí, Teresina, 2025.por
dc.identifier.urihttp://sistemas2.uespi.br/handle/tede/3111-
dc.description.resumoPoincianella bracteosa (Fabaceae), conhecida como catingueira, tem uso popular no tratamento de diarreias, hepatite, infecções e enxaqueca. O presente trabalho teve como objetivo caracterizar o perfil fitoquímico, atividade antioxidante, citogenotóxica e efeito genoprotetor do extrato etanólico (EE) das cascas do caule de P. bracteosa em células meristemáticas de Allium cepa. A prospecção química qualitativa e cromatografia em camada delgada (CCD) do EE detectaram fenóis, saponinas, alcaloides, flavonoides, taninos pirogálicos e terpenos, enquanto a HPLC-DAD mostrou flavonoides e ácidos fenólicos. A caracterização metabólica por Orbitrap-HRMS ESI (-) do EE sugeriu a presença de compostos evidenciados pela primeira vez na espécie, como o kaempferol, quercertina, isoquercitrina, isovitexina, ácidos (ursólico, gálico, dicafeoilquínico, elágico), amentoflavona, castalagina e corilagina. O EE demonstrou atividade antioxidante frente ao radical DPPH (CE50 = 27,53 ± 0,26 μg/ml) e ABTS (CE50 = 122,81 ± 2,03 μg/ml) e o teor de compostos fenólicos foi de 225,53 mg EAG/g. No ensaio A. cepa, o EE apresentou citotoxicidade nas duas maiores concentrações (1 e 2 mg/ml), não foi genotóxico em nenhuma das concentrações (0,25; 0,5; 1 e 2 mg/ml) e demonstrou efeito genoprotetor no pré, simultâneo e pós-tratamento com porcentagem de redução variando de 49,79 a 52,28 (pré); 65,17 a 93,70 (simultâneo) e 49,50 a 86,66 (pós). Os resultados mostraram que o EE é fonte importante de compostos antioxidantes com efeito não genotóxico e genoprotetor, sugerindo aplicações terapêuticas, especialmente em doenças relacionadas ao estresse oxidativo.por
dc.description.abstractPoincianella bracteosa (Fabaceae), known as catingueira, is commonly used to treat diarrhea, hepatitis, infections, and migraines. This study aimed to characterize the phytochemical profile, antioxidant activity, cytotoxicity, and genoprotective effects of the ethanolic extract (EE) from the stem bark of P. bracteosa on meristematic cells of Allium cepa. Qualitative chemical prospecting and thin-layer chromatography (TLC) of the EE detected phenols, saponins, alkaloids, flavonoids, pyrogallic tannins, and terpenes, while HPLC-DAD revealed flavonoids and phenolic acids. Metabolic characterization using Orbitrap-HRMS ESI (-) of EE suggested the presence of compounds, such as kaempferol, quercetin, isoquercitrin, isovitexin, acids (ursolic, gallic, dicaffeoyl quinic, and ellagic), amentoflavone, castalagin, and corilagin, which have been evidenced for the first time in this species. EE exhibited antioxidant activity against DPPH (EC50 = 27.53 ± 0.26 μg/ml) and ABTS (EC50 = 122.81 ± 2.03 μg/ml) radicals, with a phenolic compound content of 225.53 mg EAG/g. In the A. cepa assay, EE showed cytotoxicity at the two highest concentrations (1 and 2 mg/ml), was not genotoxic at any of the concentrations (0.25, 0.5, 1, and 2 mg/ml), and demonstrated a genoprotective effect in pre-, simultaneous, and post-treatment, with percentage reduction ranging from 49.79 to 52.28 (pre), 65.17 to 93.70 (simultaneous), and 49.50 to 86.66 (post). The results showed that EE is an important source of antioxidant compounds with non-genotoxic and genoprotective effects, suggesting its therapeutic applications, especially in diseases related to oxidative stress.eng
dc.description.provenanceSubmitted by Francisco Das Chagas Pereira cardoso (chagaskardlsf@gmail.com) on 2026-01-14T20:13:18Z No. of bitstreams: 2 DISSERTACAO_Chagas_PM6_Final_assinado_assinado_assinado_assinado_assinado.pdf: 2157547 bytes, checksum: 30aad087b56b431351e39224520fa6b9 (MD5) Termo-de-Autorizacao-repositorio-UESPI_assinado_assinado.pdf: 229564 bytes, checksum: 893105592105f7a9ab6b002192394a61 (MD5)eng
dc.description.provenanceApproved for entry into archive by Curadoria Digital Biblioteca Central (repositorioinstitucional@uespi.br) on 2026-01-15T12:23:24Z (GMT) No. of bitstreams: 2 DISSERTACAO_Chagas_PM6_Final_assinado_assinado_assinado_assinado_assinado.pdf: 2157547 bytes, checksum: 30aad087b56b431351e39224520fa6b9 (MD5) Termo-de-Autorizacao-repositorio-UESPI_assinado_assinado.pdf: 229564 bytes, checksum: 893105592105f7a9ab6b002192394a61 (MD5)eng
dc.description.provenanceMade available in DSpace on 2026-01-15T12:23:24Z (GMT). No. of bitstreams: 2 DISSERTACAO_Chagas_PM6_Final_assinado_assinado_assinado_assinado_assinado.pdf: 2157547 bytes, checksum: 30aad087b56b431351e39224520fa6b9 (MD5) Termo-de-Autorizacao-repositorio-UESPI_assinado_assinado.pdf: 229564 bytes, checksum: 893105592105f7a9ab6b002192394a61 (MD5) Previous issue date: 2025-10-31eng
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Estadual do Piauípor
dc.publisher.departmentCentro de Ciencias da Naturezapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUESPIpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.references1. MATOS, R. C. DE. et al. Evidence for the efficacy of anti-inflammatory plants used in Brazilian traditional medicine with ethnopharmacological relevance. Journal of Ethnopharmacology, v. 329, p. 118137, jul. 2024. 2. SILVA, W. A. et al. Main chemical constituents and pharmacological ctivities of Dimorphandra spp. Brazilian Journal of Biology, v. 85, 2025. 3. ORGANIZAÇÃO MUNDIAL DA SAÚDE- OMS. Legal Status of Traditional Medicine and Complementary/Alternative Medicine: A Worldwide Review.; 2001. 4. SERAN, S. et al. Augmentation of betacyanin and quercetin in hybrid callus: Comprehensive assessment of biosynthesized silver nanoparticles for their potent biological activities, advanced in silico interactions, and rigorous toxicological evaluation. Industrial Crops and Products, v. 227, p. 120824, maio 2025. 5. MEIRELES, R. DE N. et al. Relationships Between the Use of Medicinal Plants and Animals and Sociodemographic Factors in Brazil: a Systematic Review. Human Ecology, v. 52, n. 6, p. 1217–1237, 8 dez. 2024. 6. BRASIL. Conselho Nacional de Saúde. Resolução n. 338, de 06 de Maio de 2004. Aprova a Política Nacional de Assistência Farmacêutica.; 2004. 7. ANVISA. Memento Fitoterápico da Farmacopéia Brasileira. 1° edição ed. Brasília, Brasil: 2016 8. AZEVEDO, D. Q. DE et al. Implantação de uma farmácia viva no município de Itajubá-MG. Revista de administração Faces Journal, v. 23, n. 04, p. 440–461, out. 2024. 9. CHEROBIN, F. et al. Medicinal plants and public health policies: new perspectives on old practices. Physis, v. 32, n. 3, 2022. 10. SOUSA, N. F. DE et al. In Silico and In Vitro Studies of Terpenes from the Fabaceae Family Using the Phenotypic Screening Model against the SARS-CoV-2 Virus. Pharmaceutics, v. 16, n. 7, p. 912, 9 jul. 2024. 11. MORANTE-CARRIEL, J. et al. Therapeutic Potential of Prenylated Flavonoids of the Fabaceae Family in Medicinal Chemistry: An Updated Review. International Journal of Molecular Sciences, v. 25, n. 23, p. 13036, 4 dez. 2024. 12. CRUZ, R. C. D. DA et al. Bioatividade da raiz de Poincianella bracteosa (Tul.) L.P. Queiroz (Fabaceae) sobre larvas do Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Brazilian Journal of Biosciences, v. 13, n. 1679–2343, p. 259–264, out. 2015. 13. CASTRO, A. S.; CAVALCANTE, A. Flores da caatinga = Caatinga flowers. Campina Grande-PB: Ministério da Ciência, Tecnologia e Inovação–Instituto Nacional do Semiárido., 2011. 14. MONTEIRO, J. M. et al. Does total tannin content explain the use value of spontaneous medicinal plants from the Brazilian semi-arid region? Revista Brasileira de Farmacognosia, v. 24, n. 2, p. 116–123, 2014. 15. CASTRO, K. N. DE C. et al. Ethnobotanical and ethnoveterinary study of medicinal plants used in the municipality of Bom Princípio do Piau, Piau, Brazil. Journal of Medicinal Plants Research, v. 10, n. 23, p. 318–330, 17 jun. 2016. 16. CORADIN, L.; CAMILLO, J.; PAREYN, F. G. C. Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial Plantas para o Futuro - Região Centro-Oeste. Brasília: Ministério do meio Ambiente., 2018. 17. COUTO, A. C. F. et al. Antimutagenic activity and identification of antioxidant compounds in the plant Poincianella bracteosa (Fabaceae). Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN, v. 67, n. 6, p. 0–000, 2019. 18. FREIRE, J. DOS S. et al. Phytochemical and antioxidant characterization, cytogenotoxicity and antigenotoxicity of the fractions of the ethanolic extract of in Poincianella bracteosa (Tul.) L.P. Queiroz. Journal of Toxicology and Environmental Health - Part A: Current Issues, v. 83, n. 23–24, p. 730–747, 16 dez. 2020. 19. PEREIRA, M. L. et al. Evaluation of effects of Poincianella bracteosa (Tul.) L.P. Queiroz leaves in Allium cepa and Mus musculus. Biotechnic and Histochemistry, v. 95, n. 6, p. 464–473, 17 ago. 2020. 20. SILVA, A. G. A. et al. Chemical composition and photoprotective and antiradical activities of the branches of platonia insignis (clusiaceae). Quimica Nova, v. 44, n. 8, p. 954–962, 2021. 21. MARINHO, T. A. et al. Phytochemical characterization, and antioxidant and antibacterial activities of the hydroethanolic extract of anadenanthera peregrina stem bark. Brazilian Journal of Biology, v. 82, 2022. 22. WOŁOSIAK, R. et al. Verification of the conditions for determination of antioxidant activity by abts and dpph assays—a practical approach. Molecules, v. 27, n. 1, 1 jan. 2022. 23. SOUSA, H. G. et al. Phytochemical screening, phenolic and flavonoid contents, antioxidant and cytogenotoxicity activities of Combretum leprosum Mart. (Combretaceae). Journal of Toxicology and Environmental Health - Part A: Current Issues, v. 84, n. 10, p. 399–417, 2021. 24. SALES, P. P. et al. Phytochemical characterization, isolation, antioxidant and cytogenotoxic activity of leaves of Heliotropium elongatum (Lehm) I.M. Johnst. Journal of Toxicology and Environmental Health, Part A, v. 86, n. 23, p. 871–897, 2 dez. 2023. 25. SANTOS, P. N. DOS et al. Análise do potencial citotóxico, genotóxico e mutagênico do extrato hidroalcóolico das folhas da Morus nigra L. Através do bioensaio Allium cepa. Research, Society and Development, v. 9, n. 4, p. e132942968, 22 mar. 2020. 26. DIAS, M. S. et al. Cytogenotoxicity and protective effect of piperine and capsaicin on meristematic cells of Allium cepa l. Anais da Academia Brasileira de Ciências, v. 93, 2021. 27. JUNIOR, E. P. D. V. et al. Protective effect of kavain in meristematic cells of Allium cepa L. Anais da Academia Brasileira de Ciências, v. 94, n. 2, 2022. 28. LOPES, K. S. et al. Identification of bioactive compounds and cytogenotoxicity of the essential oil from the leaves of Croton heliotropiifolius Kunth. Journal of Toxicology and Environmental Health, Part A, v. 85, n. 24, p. 1002–1018, 17 dez. 2022. 29. LEME, D. M.; MARIN-MORALES, M. A. Allium cepa test in environmental monitoring: A review on its application. Mutation Research - Reviews in Mutation Research, jul. 2009. 30. EREN, Y.; ÖZATA, A. Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests. Revista Brasileira de Farmacognosia, v. 24, n. 1, p. 51–59, jan. 2014. 31. FEDEL-MIYASATO, L. E. S. et al. Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: A comparative study. Genetics and Molecular Research, v. 13, n. 2, p. 3411–3425, 2014. 32. YOUSEFBEYK, F. et al. Phytochemical analysis, antioxidant, antibacterial, and cytotoxic activities of leaves and roots of Rubus hyrcanus Juz. European Food Research and Technology, v. 248, n. 1, p. 141–152, 26 jan. 2022. 33. DORMOUSOGLOU, M. et al. Phytochemical Analysis and Genotoxicological Evaluation of Prickly Pear Peel Extracts. Plants, v. 12, n. 7, p. 1537, 3 abr. 2023. 34. DORMOUSOGLOU, M. et al. Beneficial properties of Drimia numidica leaf methanolic extract against the cytogenotoxic effects of mitomycin C on human lymphocytes. Food and Chemical Toxicology, v. 173, p. 113626, mar. 2023. 35. ORGANIZAÇÃO MUNDIAL DA SAÚDE- OMS. Diretrizes Geras Para Metodologias Sobre Pesquisa e Avaliação de Medicina Tradicional.; 2000. 36. VAOU, N. et al. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms, v. 9, n. 10, p. 2041, 27 set. 2021. 37. PEDROSO R. S et al. Plantas medicinais: uma abordagem sobre o uso seguro e racional. Physis: Revista de Saúde Coletiva. 2021;31(2). 38. DUTRA, R. C. et al. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research, v. 112, p. 4–29, out. 2016. 39. BRAGA, F. C. Paving New Roads Towards Biodiversity-Based Drug Development in Brazil: Lessons from the Past and Future Perspectives. Revista Brasileira de Farmacognosia, v. 31, n. 5, p. 505–518, 17 set. 2021. 40. PIRES G. B et al . Análise da atuação do Conselho Nacional de Saúde na Política Nacional de Assistência Farmacêutica. Saúde em Debate, v.49. P.144.2025 41. CERQUEIRA, T. M. G. et al. The Use of Medicinal Plants in Maceió, Northeastern Brazil: An Ethnobotanical Survey. Medicines, v. 7, n. 2, p. 7, 21 jan. 2020. 42. FERREIRA, E. DA C. et al. Local Knowledge and Use of Medicinal Plants in a Rural Community in the Agreste of Paraíba, Northeast Brazil. Evidence-Based Complementary and Alternative Medicine, v. 2021, p. 1–16, 29 dez. 2021. 43. BEZERRA, J. J. L.; PINHEIRO, A. A. V.; BARRETO, E. DE O. Medicinal plants used in the treatment of asthma in different regions of Brazil: A comprehensive review of ethnomedicinal evidence, preclinical pharmacology and clinical trials. Phytomedicine Plus, v. 2, n. 4, p. 100376, nov. 2022. 44. KUHN AGNES, K. N. et al. Ethnobotanical knowledge on native Brazilian medicinal plants traditionally used as anthelmintic agents – A review. Experimental Parasitology, v. 249, p. 108531, jun. 2023. 45. GRYGIER, A. et al. Seven underutilized species of the Fabaceae family with high potential for industrial application as alternative sources of oil and lipophilic bioactive compounds. Industrial Crops and Products, v. 186, p. 115251, out. 2022. 46. ZAPPI, D. C. et al. Growing knowledge: an overview of Seed Plant diversity in Brazil. Rodriguésia, v. 66, n. 4, p. 1085–1113, 2015. 47. ASFAW, M. M.; ABEBE, F. B. Traditional Medicinal Plant Species Belonging to Fabaceae Family in Ethiopia: A Systematic Review. International Journal of Plant Biology, v. 12, n. 1, p. 8473, 5 jan. 2022. 48. MAROYI, A. Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review. Plants, v. 12, n. 6, p. 1255, 10 mar. 2023. 49. CRUZ, M. F. DA et al. The subfamily Cercidoideae (Fabaceae Lindl.) in the Chapada do Araripe, Northeast Brazil. Phytotaxa, v. 640, n. 1, p. 27–38, 7 mar. 2024. 50. USMAN, M. et al. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules, v. 27, n. 12, p. 3863, 16 jun. 2022. 51. SILVA, L. N. et al. Hydrolyzable tannins from Poincianella (Caesalpinia) microphylla fruits: Metabolite profiling and anti-Trichomonas vaginalis activity. Food Research International, v. 134, p. 109236, ago. 2020. 52. SOUSA, L. M. S. DE. et al. Poincianella pyramidalis (Tul) L.P. Queiroz: A review on traditional uses, phytochemistry and biological-pharmacological activities. Journal of Ethnopharmacology, v. 264, p. 113181, jan. 2021. 53. ZANIN, J. L. B. et al. The Genus Caesalpinia L. (Caesalpiniaceae): Phytochemical and Pharmacological Characteristics. Molecules, v. 17, n. 7, p. 7887–7902, 29 jun. 2012. 54. SILVA, K. S. DA et al. Phytotherapeutic properties of the Caesalpinia genus present in the Caatinga biome. Scientific Electronic Archives, v. 14, n. 6, 5 jul. 2021. 55. CHAVES, T. P. et al. Phytochemical characterization and mutagenicity, cytotoxicity, antimicrobial and modulatory activities of Poincianella pyramidalis (Tul.) L.P. Queiroz. Natural Product Research, v. 34, n. 23, p. 3382–3387, 1 dez. 2020. 56. GUIDI, A. C. et al. Stem bark extract of Poincianella pluviosa incorporated in polymer film: Evaluation of wound healing and anti-staphylococcal activities. Injury, v. 51, n. 4, p. 840–849, abr. 2020. 57. FERRAZ, J. S. F. et al. Estrutura do componente arbustivo-arbóreo da vegetação em duas áreas de caatinga, no município de Floresta, Pernambuco. Revista Árvore, v. 38, n. 6, p. 1055–1064, dez. 2014. 58. OLIVEIRA, L. P. DE et al. Chemical characteristics, degradation kinetics and gas production of arboreal species for ruminants. REVISTA CIÊNCIA AGRONÔMICA, v. 51, n. 3, 2020. 59. BAPTISTEL, A. C. et al. Plantas medicinais utilizadas na Comunidade Santo Antônio, Currais, Sul do Piauí: um enfoque etnobotânico. Revista Brasileira de Plantas Medicinais, v. 16, n. 2 suppl 1, p. 406–425, 2014. 60. ANJALI et al. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress, v. 8, p. 100154, jun. 2023. 61. SALAM, U. et al. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life, v. 13, n. 3, p. 706, 6 mar. 2023. 62. BORGES, L. P.; AMORIM, V. A. METABÓLITOS SECUNDÁRIOS DE PLANTAS SECONDARY PLANT METABOLITES. Revista Agrotecnologia, Ipameri, n. 11, p. 54–67, 2020. 63. KETEHOULI, T. et al. Secondary metabolites in plant-microbe interactions. Journal of Applied Microbiology, v. 136, n. 6, 2 jun. 2025. 64. CHEN, N. et al. Potential application of phenolic compounds with different structural complexity in maize starch-based film. Food Structure, v. 36, p. 100318, abr. 2023. 65. KUMAR, K. et al. An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance. Stresses, v. 3, n. 3, p. 570–585, 8 ago. 2023. 66. OGUTCEN, E. et al. Chemical Basis of Floral Color Signals in Gesneriaceae: The Effect of Alternative Anthocyanin Pathways. Frontiers in Plant Science, v. 11, 14 dez. 2020. 67. EL-MERGAWI, R.; EL-DABAA, M.; ELKHAWAGA, F. The metabolic profiles of phenolic acids and aromatic amino acids in the Orobanche crenata parasite and its host faba bean at different infestation stages. Phytoparasitica, v. 52, n. 5, p. 94, 30 nov. 2024. 68. RANNER, J. L. et al. Primary and Secondary Metabolites in Lotus japonicus. Journal of Agricultural and Food Chemistry, v. 71, n. 30, p. 11277–11303, 2 ago. 2023. 69. REZAUL ISLAM, MD. et al. Alkaloids as drug leads in Alzheimer’s treatment: Mechanistic and therapeutic insights. Brain Research, v. 1834, p. 148886, jul. 2024. 70. XUE, X. et al. Metabolomics and transcriptomics analyses for characterizing the alkaloid metabolism of Chinese jujube and sour jujube fruits. Frontiers in Plant Science, v. 14, 18 set. 2023. 71. WEI, J. et al. Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants (Camellia sinensis). International Journal of Molecular Sciences, v. 24, n. 8, p. 6937, 8 abr. 2023. 72. FAN, M. et al. Application of Terpenoid Compounds in Food and Pharmaceutical Products. Fermentation, v. 9, n. 2, p. 119, 26 jan. 2023. 73. ZHAN, X.; QIAN, Y.; MAO, B. Metabolic Profiling of Terpene Diversity and the Response of Prenylsynthase-Terpene Synthase Genes during Biotic and Abiotic Stresses in Dendrobium catenatum. International Journal of Molecular Sciences, v. 23, n. 12, p. 6398, 7 jun. 2022. 74. BUENO, F. G. et al. Hydrolyzable tannins from hydroalcoholic extract from Poincianella pluviosa stem bark and its wound-healing properties: Phytochemical investigations and influence on in vitro cell physiology of human keratinocytes and dermal fibroblasts. Fitoterapia, v. 99, p. 252–260, dez. 2014. 75. BUENO, F. G. et al. Enhanced Cutaneous Wound Healing In Vivo by Standardized Crude Extract of Poincianella pluviosa. PLOS ONE, v. 11, n. 3, p. e0149223, 3 mar. 2016. 76. SOUZA, J. et al. Leaves from the Tree Poincianella pluviosa as a Renewable Source of Antiplasmodial Compounds against Chloroquine-Resistant Plasmodium falciparum. Journal of the Brazilian Chemical Society, 2018. 77. TUMILAAR, S. G. et al. A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. Journal of Chemistry, v. 2024, p. 1–21, 31 maio 2024. 78. LI, X. et al. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Frontiers in Pharmacology, v. 14, 26 jul. 2023. 79. NUNES, I. J. et al. Exploring the structure-activity relationship (SAR) of Schiff bases as effective compounds in scavenging free radicals. Journal of Molecular Structure, v. 1315, p. 138729, nov. 2024. 80. VELLOSA, J. C. R. et al. ESTRESSE OXIDATIVO: UMA INTRODUÇÃO AO ESTADO DA ARTE / OXIDATIVE STRESS: AN INTRODUCTION TO THE STATE OF ART. Brazilian Journal of Development, v. 7, n. 1, p. 10152–10168, 2021. 81. BLAGOV, A. V. et al. Potential use of antioxidants for the treatment of chronic inflammatory diseases. Frontiers in Pharmacology, v. 15, 16 maio 2024. 82. SOUZA, L. M. V. et al. Treinamento intervalado de alta intensidade e estresse oxidativo: uma breve apresentação. Research, Society and Development, v. 9, n. 8, p. e741986478, 31 jul. 2020. 83. MUNTEANU, I. G.; APETREI, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, v. 22, n. 7, p. 3380, 25 mar. 2021. 84. GULCIN, İ.; ALWASEL, S. H. DPPH Radical Scavenging Assay. Processes, v. 11, n. 8, p. 2248, 26 jul. 2023. 85. HASSANPOUR, S. H.; DOROUDI, A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna Journal of PhytomedicineMashhad University of Medical Sciences, 1 jan. 2023. 86. CANO, A. et al. ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes, v. 11, n. 1, p. 185, 6 jan. 2023. 87. EL OMARI, N. et al. Fenchone and camphor: Main natural compounds from Lavandula stoechas L., expediting multiple in vitro biological activities. Heliyon, v. 9, n. 11, p. e21222, nov. 2023. 88. ILYASOV, I. R. et al. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. International Journal of Molecular Sciences, v. 21, n. 3, p. 1131, 8 fev. 2020. 89. CAVALCANTE, M. DE A.; BORGES, W. L.; SOUZA, T. M. DE. Compostos fenólicos a partir de vegetais: uma revisão sobre os métodos de quantificação e avaliação das propriedades antioxidante e antimicrobiana. Peer Review, v. 6, n. 10, p. 66–89, 9 maio 2024. 90. MATOS, F. J. DE A. Introdução a fitoquímica experimental. FORTALEZA: UFC, 2009. v. 03 91. BELEW, A. A.; HANA, G. M.; MESHESHA, D. S. Preliminary Phytochemical Screening, Isolation, Characterization, Structural Elucidation and Antibacterial Activities of Leaves Extracts Rhus vulgaris (Kimmo). Oriental Journal of Physical Sciences, v. 9, n. 2, p. 118–130, 10 dez. 2024. 92. MAHESHWARAN, L. et al. Phytochemical Testing Methodologies and Principles for Preliminary Screening/ Qualitative Testing. Asian Plant Research Journal, v. 12, n. 5, p. 11–38, 19 ago. 2024. 93. AVRĂMIA, I.; OROIAN, M.-A.; OIŢĂ, R.-C. A review of current trends of vitamin identification and quantification by chromatography from food samples. Journal of Food Composition and Analysis, v. 131, p. 106244, jul. 2024. 94. CUSTODIO-MENDOZA, J. A. et al. Advances in Chromatographic Analysis of Phenolic Phytochemicals in Foods: Bridging Gaps and Exploring New Horizons. Foods, v. 13, n. 14, p. 2268, 18 jul. 2024. 95. MISS. PAYAL BADHE; DR. VIJAYA BARGE. A Review on High Performance Thin Layer Chromatography. International Journal of Scientific Research in Science and Technology, p. 445–455, 7 fev. 2024. 96. SUSANTI, I. et al. Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. Plants, v. 13, n. 7, p. 965, 27 mar. 2024. 97. BUDETIĆ, M. et al. Review of Characteristics and Analytical Methods for Determination of Thiabendazole. Molecules, v. 28, n. 9, p. 3926, 6 de maio, 2023. 98. DEBNATH, S. et al. Advances in chromatography: contemporary techniques and applications. Essential Chem, v. 2, n. 1, p. 1–27, 31 dez. 2025. 99. PANDISELVAM, R. et al. Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut (Cocos nucifera L.). Molecules, v. 27, n. 10, p. 3250, 19 maio 2022. 100. PAVIA, D. L. et al. Introdução à Espectroscopia: Tradução da 4a edição norte-americana. Cengage Learning ed. São Paulo: 2010, 2010. v. 1 101. GUO, Y. et al. Advances on Water Quality Detection by UV-vis Spectroscopy. Applied Sciences, v. 10, n. 19, p. 6874, 30 set. 2020. 102. MA, X. Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques. Molecules, v. 27, n. 19, p. 6466, 30 set. 2022. 103. DEMICHEVA, E. et al. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites, v. 14, n. 1, p. 54, 14 jan. 2024. 104. DAVID SMITH et al. Breathborne Biomarkers and the Human Volatilome. Elsevier, 2020. 105. MALM, L. et al. Quantification Approaches in Non-Target LC/ESI/HRMS Analysis: An Interlaboratory Comparison. Analytical Chemistry, v. 96, n. 41, p. 16215–16226, 15 out. 2024. 106. ARAÚJO, J. R. DA S. et al. Phytochemical prospecting, isolation, and protective effect of the ethanolic extract of the leaves of Jatropha mollissima (Pohl) Baill. Journal of Toxicology and Environmental Health, Part A, v. 84, n. 18, p. 743–760, 17 set. 2021. 107. LEME, D. M.; MARIN-MORALES, M. A. Allium cepa test in environmental monitoring: A review on its application. Mutation Research/Reviews in Mutation Research, v. 682, n. 1, p. 71–81, jul. 2009. 108. LEME, D. M.; ANGELIS, D. DE F. DE; MARIN-MORALES, M. A. Action mechanisms of petroleum hydrocarbons present in waters impacted by an oil spill on the genetic material of Allium cepa root cells. Aquatic Toxicology, v. 88, n. 4, p. 214–219, 30 jul. 2008. 109. MAZZEO, D. E. C.; FERNANDES, T. C. C.; MARIN-MORALES, M. A. Cellular damages in the Allium cepa test system, caused by BTEX mixture prior and after biodegradation process. Chemosphere, v. 85, n. 1, p. 13–18, 2011. 110. FERNANDES, T. C. C.; MAZZEO, D. E. C.; MARIN-MORALES, M. A. Origin of nuclear and chromosomal alterations derived from the action of an aneugenic agent-Trifluralin herbicide. Ecotoxicology and Environmental Safety, v. 72, n. 6, p. 1680–1686, set. 2009. 111. VENTURA-CAMARGO, B. DE C. et al. The use of the Cytogenetic to Identify Mechanisms of Action of an Azo Dye in Allium Cepa Meristematic Cells. Journal of Environmental & Analytical Toxicology, v. 01, n. 02, 2011. 112. CHAVES, M. H. Análise de extratos de plantas por CCD: Uma metodologia aplicada à disciplina “química orgânica” - Analysis of extracts of plants by tlc: a methodology applied in the “organic chemistry”. QUÍMICA NOVA, v. 20, n. 5, p. 560–562, 1997. 113. SWAIN, T.; HILLIS, W. E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, v. 10, n. 1, p. 63–68, 2 jan. 1959. 114. ROCHA, T. S. DA et al. Vitamin C and Phenolic Antioxidants of Jua (Ziziphus joazeiro M.) Pulp: A Rich Underexplored Brazilian Source of Ellagic Acid Recovered by Aqueous Ultrasound-Assisted Extraction. Molecules, v. 27, n. 3, p. 627, 19 jan. 2022. 115. BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, v. 28, n. 1, p. 25–30, 1995. 116. VIEIRA, L. M. et al. Fenólicos totais e capacidade antioxidante in vitro de polpas de frutos tropicais. Revista Brasileira de Fruticultura, v. 33, n. 3, p. 888–897, 9 set. 2011. 117. DIAS, W. L. F. et al. Cytogenotoxic effect, phytochemical screening and antioxidant potential of Jatropha mollissima (Pohl) Baill leaves. South African Journal of Botany, v. 123, p. 30–35, jul. 2019. 118. RUFINO, M. DO S. M. et al. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH Introdução. Fortaleza: Embrapa, 2007. 119. RE, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and medicine, v. 26, n. 9–10, p. 1231–1237, maio 1999. 120. LIMA, A. DE. Caracterização química, avaliação da atividade antioxidante in vitro e in vivo, e identificação dos compostos fenólicos presentes no Pequi (Caryocar brasiliense, Camb.). São Paulo: Universidade de São Paulo, 23 abr. 2008. 121. ALVES, P. E S. et al. The Free Radical Scavenging Property of the Leaves, Branches, and Roots of Mansoa hirsuta DC: In Vitro Assessment, 3D Pharmacophore, and Molecular Docking Study. Molecules, v. 27, n. 18, p. 6016, 15 set. 2022. 122. OLIVEIRA, M. D. A. et al. Anthelmintic Potential of Conjugated Long-Chain Fatty Acids Isolated from the Bioluminescent Mushroom Neonothopanus gardneri. Journal of Natural Products, v. 88, n. 2, p. 255–261, 28 fev. 2025. 123. ALMEIDA, P. M. et al. Genotoxic potential of leaf extracts of Jatropha gossypiifolia L. Genetics and Molecular Research, v. 15, n. 1, 5 fev. 2016. 124. FERNANDES, T. C. C.; MAZZEO, D. E. C.; MARIN-MORALES, M. A. Origin of nuclear and chromosomal alterations derived from the action of an aneugenic agent—Trifluralin herbicide. Ecotoxicology and Environmental Safety, v. 72, n. 6, p. 1680–1686, set. 2009. 125. WATERS, M. D. et al. Antimutagenicity profiles for some model compounds. Mutation Research/Reviews in Genetic Toxicology, v. 238, n. 1, p. 57–85, jan. 1990. 126. BORGES, C. V. et al. Medicinal plants: Influence of environmental factors on the content of secondary metabolites. Em: Medicinal Plants and Environmental Challenges. Springer International Publishing, 2017. p. 259–277. 127. MORAES, G. V. et al. Potencial antioxidante dos flavonoides e aplicações terapêuticas. Research, Society and Development, v. 11, n. 14, p. e238111436225, 25 out. 2022. 128. JESUS, A. et al. Phenolics as Active Ingredients in Skincare Products: A Myth or Reality? Molecules, 2025. 129. WENG, Z. et al. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. Journal of Advanced Research, v. 57, p. 197–212, 1 mar. 2024. 130. MELO, J. G. DE et al. Antiproliferative Activity, Antioxidant Capacity and Tannin Content in Plants of Semi-Arid Northeastern Brazil. Molecules, v. 15, n. 12, p. 8534–8542, 24 nov. 2010. 131. SÁNCHEZ, C. L.; DE JESÚS, F.; CRUZ, P. Las saponinas y su uso farmacéutico. Revista Del Centro de Graduados e Investigación, v. 37, n. 0185–6294, p. 120–126, 2022. 132. CHAVARRO, C. F. G. et al. Amaryllidaceae: fuente potencial de alcaloides. Actividades biológicas y farmacológicas. Ciencia y Agricultura, v. 17, n. 3, p. 78–94, 28 ago. 2020. 133. BILBAO-RAMOS, P. et al. Evaluating the Potential of Ursolic Acid as Bioproduct for Cutaneous and Visceral Leishmaniasis. Molecules, v. 25, n. 6, p. 1394, 19 mar. 2020. 134. ALVES, C. Q. et al. Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Quim. Nova, v. 33, n. 10, p. 2202–2210, 2010. 135. JAŚKIEWICZ, K.; SZCZĘSNA, T.; JACHUŁA, J. How Phenolic Compounds Profile and Antioxidant Activity Depend on Botanical Origin of Honey—A Case of Polish Varietal Honeys. Molecules, v. 30, n. 2, p. 360, 17 jan. 2025. 136. BERTELLA, A. et al. Phytochemical Study and In Vitro Antioxidant Activity of Helianthemum cinereum Along with Antitumor Activity of the Isolated trans-Tiliroside and Luteolin 4′-O-β-Xyloside. Molecules, v. 29, n. 24, p. 5935, 16 dez. 2024. 137. QI, N. et al. Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese C. pi. Shen Honey. Molecules, v. 30, n. 2, p. 370, 17 jan. 2025. 138. MORAES, S. Z. DA C. DE et al. Antinociceptive and anti-inflammatory effect of Poincianella pyramidalis (Tul.) L.P. Queiroz. Journal of Ethnopharmacology, v. 254, p. 112563, maio 2020. 139. REYNERTSON, K. A.; BASILE, M. J.; KENNELLY, E. J. Potencial antioxidante de Sete Frutos Mirtáceos. Ethnobotany Research and Applications, v. 3, p. 25–35, 2005. 140. RAFIEE, S. A.; FARHOOSH, R.; SHARIF, A. Antioxidant Activity of Gallic Acid as Affected by an Extra Carboxyl Group than Pyrogallol in Various Oxidative Environments. European Journal of Lipid Science and Technology, p. 1800319, 25 set. 2018. 141. YANG, Y. et al. Photo-assisted Zn-air battery promoted self-powered sensor for selective and sensitive detection of antioxidant gallic acid based on Z-scheme nanoarchitectonics with heterojunction AgBr/CuBi2O4. Sensors and Actuators B: Chemical, v. 393, p. 134302, out. 2023. 142. BAJPAI, V. K. et al. Antioxidant and antimicrobial efficacy of a biflavonoid, amentoflavone from Nandina domestica in vitro and in minced chicken meat and apple juice food models. Food Chemistry, v. 271, p. 239–247, jan. 2019. 143. SIMUNKOVA, M. et al. Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu (II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study. International Journal of Molecular Sciences, v. 22, n. 4, p. 1619, 5 fev. 2021. 144. COLINO, C. I. et al. A comparative study of liposomes and chitosomes for topical quercetin antioxidant therapy. Journal of Drug Delivery Science and Technology, v. 68, p. 103094, fev. 2022. 145. GUSMÃO, D. E. et al. Avaliação do Efeito do Extrato Etanólico de Piper umbellatum L. no Controle Alternativo de Rhizoctonia solani e Macrophomina phaseolina. Ensaios e Ciência C Biológicas Agrárias e da Saúde, v. 24, n. 5- esp., p. 516–522, 18 fev. 2021. 146. SILVA, D. F. DA et al. Caracterização química e estudo biomonitorado de extratos de Polygala boliviensis A.W. Benn (Polygalaceae). Revista RG News, v. 8, n. 2, p. 32–43, 2022. 147. TSIMOGIANNIS, D. et al. Characterization of Flavonoid Subgroups and Hydroxy Substitution by HPLC-MS/MS. Molecules, v. 12, n. 3, p. 593–606, 2007. 148. ANDRADE, C. R. B. DE et al. Correlação entre composição química de folhas de Zanthoxylum caribaeum Lam (Rutaceae) e atividade antioxidante. Revista RG News, v. 8, n. 2, p. 69–80, 2022. 149. BAKOUR, M. et al. Antioxidant content and identification of phenolic/flavonoid compounds in the pollen of fourteen plants using HPLC-DAD. Journal of Apicultural Research, v. 59, n. 1, p. 35–41, 1 jan. 2020. 150. FRANCO, D. M. et al. Seasonal variation in allelopathic potential of the leaves of Copaifera langsdorffii Desf. Acta Botanica Brasilica, v. 30, n. 2, p. 157–165, 15 mar. 2016. 151. PEREIRA, I. DE S. P.; VEGA, M. R. Flavonoids in the Annona genus: Chromatographic and Spectral Methods of Analysis - A Review. Revista Virtual de Química, v. 14, n. 5, p. 778–789, 2022. 152. GAZAFROUDI, K. N. et al. From Stem to Spectrum: Phytochemical Characterization of Five Equisetum Species and Evaluation of Their Antioxidant Potential. Molecules, v. 29, n. 12, p. 2821, 13 jun. 2024. 153. CHATZITZIKA, C. et al. HPLC Analysis of Phenolic Compounds and Flavonoids with Overlapping Peaks. Food technology and biotechnology, v. 58, n. 1, p. 12–19, 2020. 154. SANTI, M. M. et al. Determinação do perfil fitoquímico de extrato com atividade antioxidante da espécie medicinal Cordia verbenacea DC. por HPLC-DAD. Revista Brasileira de Plantas Medicinais, v. 16, n. 2, p. 256–261, jun. 2014. 155. FILHO, A. C. P. DE M. Avaliação fitoquímica e atividades biológicas do extrato do exocarpo do fruto de Protium spruceanum. Journal of Biotechnology and Biodiversity, v. 10, n. 1, p. 034–043, 1 mar. 2022. 156. SYARIFAH, A. L.; RETNOWATI, R. Characterization of Secondary Metabolites Profile of Flavonoid from Salam Leaves (Eugenia polyantha) Using TLC and UV-Spectrophotometry. Pharmaceutical Sciences and Research (PSR), v. 6, n. 3, p. 155–163, 2019. 157. LIMA, N. M. et al. From MS1 to Structure: A Van Krevelen? DBE? Aromaticity-Based Framework for Annotating Specialized Metabolites via High-Resolution Mass Spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, v. 39, 2025. 158. MAGALHÃES, I. L. et al. Chemical Constituents from Caesalpinia férrea: Identification and 1H and 13C Resonance Assignment. American Journal of Analytical Chemistry, v. 05, n. 10, p. 688–694, 2014. 159. CAO, Q. et al. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicology and Applied Pharmacology, v. 319, p. 80–90, mar. 2017. 160. ALKADI, K. A. A. et al. In Vitro Cytotoxicity and Anti-inflammatory Cytokinine Activity Study of Three Isolated Novel Compounds of Prismatomeris glabra. Journal of Pharmacy and Bioallied Sciences, v. 13, n. 1, p. 116–122, jan. 2021. 161. ZHANG, S. et al. Quercetin from Polygonum capitatum Protects against Gastric Inflammation and Apoptosis Associated with Helicobacter pylori Infection by Affecting the Levels of p38MAPK, BCL-2 and BAX. Molecules, v. 22, n. 5, p. 744, 6 maio 2017. 162. KIM, S.-H. et al. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. European Journal of Pharmacology, v. 860, p. 172568, out. 2019. 163. SUN, X. et al. Isovitexin alleviates acute gouty arthritis in rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway. Pharmaceutical Biology, v. 59, n. 1, p. 1324–1331, 28 jan. 2021. 164. ZHANG, Y. et al. Isovitexin Inhibits Ginkgolic Acids-Induced Inflammation Through Downregulating SHP2 Activation. Frontiers in Pharmacology, v. 12, 11 ago. 2021. 165. NASANBAT, B. et al. Kaempferol therapy improved MC903 induced-atopic dermatitis in a mouse by suppressing TSLP, oxidative stress, and type 2 inflammation. Journal of Dermatological Science, v. 111, n. 3, p. 93–100, set. 2023. 166. WANG, R. et al. Kaempferol promotes non-small cell lung cancer cell autophagy via restricting Met pathway. Phytomedicine, v. 121, p. 155090, dez. 2023. 167. MAMAT, N. et al. Gallic Acid and Methyl Gallate Enhance Antiproliferative Effect of Cisplatin on Cervical Cancer (HeLa) Cells. Sains Malaysiana, v. 49, n. 5, p. 1107–1114, 31 maio 2020. 168. LIN, I.-C. et al. Absorption and Metabolism of Urolithin A and Ellagic Acid in Mice and Their Cytotoxicity in Human Colorectal Cancer Cells. Evidence-Based Complementary and Alternative Medicine, v. 2023, n. 1, 5 jan. 2023. 169. PIMPLEY, V. et al. The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Preparative Biochemistry & Biotechnology, v. 50, n. 10, p. 969–978, 2 nov. 2020. 170. LINDEN, M. et al. Effects of flavonoids on membrane adaptation of food-associated bacteria. Biochimica et Biophysica Acta (BBA) - Biomembranes, v. 1865, n. 4, p. 184137, abr. 2023. 171. PAL, S. et al. Adiponectin receptors by increasing mitochondrial biogenesis and respiration promote osteoblast differentiation: Discovery of isovitexin as a new class of small molecule adiponectin receptor modulator with potential osteoanabolic function. European Journal of Pharmacology, v. 913, p. 174634, dez. 2021. 172. VALENTOVÁ, K. et al. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, v. 68, p. 267–282, jun. 2014. 173. LANG, T.-Q. et al. Characterization of chemical components with diuretic potential from Pyrrosia petiolosa. Journal of Asian Natural Products Research, v. 23, n. 8, p. 764–771, 3 ago. 2021. 174. KANDEMIR, K. et al. Recent advances on the improvement of quercetin bioavailability. Trends in Food Science & Technology, v. 119, p. 192–200, jan. 2022. 175. ORABI, M. A. A. et al. Two new C-glycosidic ellagitannins and accompanying tannins from Lawsonia inermis leaves and their cytotoxic effects. Fitoterapia, v. 153, p. 104925, set. 2021. 176. ORABI, M. A. A. et al. Nutritional, Antioxidant, Antimicrobial, and Anticholinesterase Properties of Phyllanthus emblica: A Study Supported by Spectroscopic and Computational Investigations. Metabolites, v. 13, n. 9, p. 1013, 14 set. 2023. 177. CHANG, Z. et al. A Comprehensive Review of the Structure Elucidation of Tannins from Terminalia Linn. Evidence-Based Complementary and Alternative Medicine, v. 2019, p. 1–26, 15 nov. 2019. 178. SANTOS, G. F. DOS. et al. Mass spectrometry-based untargeted metabolomics approaches for comprehensive structural annotation of bioactive metabolites from bushy cashew (Anacardium humile) fruits. South African Journal of Botany, v. 163, p. 121–134, dez. 2023. 179. JUNIOR, A. G. et al. Nitric oxide and K ir 6.1 potassium channel mediate isoquercitrin-induced endothelium-dependent and independent vasodilation in the mesenteric arterial bed of rats. European Journal of Pharmacology, v. 788, p. 328–334, out. 2016. 180. PIAZZA, S. et al. Ellagitannins from Castanea sativa Mill. Leaf Extracts Impair H. pylori Viability and Infection-Induced Inflammation in Human Gastric Epithelial Cells. Nutrients, v. 15, n. 6, p. 1504, 21 mar. 2023. 181. LIU, F.-C. et al. Corilagin reduces acetaminophen-induced hepatotoxicity through MAPK and NF-κB signaling pathway in a mouse model. American Journal of Translational Research, v. 12, n. 9, p. 5597–5607, 2020. 182. DE, R. et al. Antimicrobial activity of ellagic acid against Helicobacter pylori isolates from India and during infections in mice. Journal of Antimicrobial Chemotherapy, v. 73, n. 6, p. 1595–1603, 1 jun. 2018. 183. VELOZ-GARCÍA, R. et al. Antimicrobial activities of cascalote (Caesalpinia cacalaco) phenolics-containing extract against fungus Colletotrichum lindemuthianum. Industrial Crops and Products, v. 31, n. 1, p. 134–138, jan. 2010. 184. PEREIRA, M. T. M. et al. The in vivo anti-inflammatory potential of Myrciaria glazioviana fruits and its chemical profile using mass spectrometry. Food Bioscience, v. 38, p. 100777, dez. 2020. 185. ODUN-AYO, F.; CHETTY, K.; REDDY, L. Determination of the ursolic and oleanolic acids content with the antioxidant capacity in apple peel extract of various cultivars. Brazilian Journal of Biology, v. 82, 2022. 186. NASCIMENTO, P. DO et al. Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives. Molecules, v. 19, n. 1, p. 1317–1327, 21 jan. 2022. 187. ZHANG, Q. et al. Pharmacognostic Study on Elsholtzia ciliata (Thumb.) Hyl: Anatomy, Phytochemistry and Pharmacological Activities. Pharmaceuticals, v. 14, n. 11, p. 1152, 12 nov. 2021. 188. FREIRE, J. DOS S. Perfil fitoquímico, atividade antioxidante e citogenotoxicidade da catingueira (Poincianella bracteosa (Tul.) L.P. Queiroz). Teresina-Programa de Pós-Graduação em Química- Universidade Estadual do Piauí., 2020. 189. JUNIOR, E. P. D. VALE et al. Protective effect of kavain in meristematic cells of Allium cepa L. Anais da Academia Brasileira de Ciências, v. 94, n. 2, 2022. 190. BIANCHI, J.; CASIMIRO FERNANDES, T. C.; MARIN-MORALES, M. A. Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere, v. 144, p. 475–483, fev. 2016. 191. KUCK, K. et al. Terpenoids from Myrrh and Their Cytotoxic Activity against HeLa Cells. Molecules, v. 28, n. 4, p. 1637, 8 fev. 2023. 192. MARTÍN-CORDERO, C. et al. Cytotoxic Triterpenoids from Erica andevalensis. Zeitschrift für Naturforschung C, v. 56, n. 1–2, p. 45–48, 1 fev. 2001. 193. DEVAPPA, R. K.; MAKKAR, H. P. S.; BECKER, K. Jatropha Diterpenes: a Review. Journal of the American Oil Chemists’ Society, v. 88, n. 3, p. 301–322, 28 mar. 2011. 194. KORNEL, A.; NADILE, M.; TSIANI, E. Evidence of the Beneficial Effects of Ursolic Acid against Lung Cancer. Molecules, v. 27, n. 21, p. 7466, 2 nov. 2022. 195. PANDA, S. S.; THANGARAJU, M.; LOKESHWAR, B. L. Ursolic Acid Analogs as Potential Therapeutics for Cancer. Molecules, v. 27, n. 24, p. 8981, 16 dez. 2022. 196. ÇAVUŞOĞLU, D. et al. Mitigative effect of green tea extract against mercury (II) chloride toxicity in Allium cepa L. model. Environmental Science and Pollution Research, v. 29, n. 19, p. 27862–27874, 4 abr. 2022. 197. CHATTERJEE, N.; WALKER, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Environmental and Molecular Mutagenesis, v. 58, n. 5, p. 235–263, 9 jun. 2017. 198. FELICIDADE, I. et al. Mutagenic and antimutagenic effects of aqueous extract of rosemary (Rosmarinus officinalis L.) on meristematic cells of Allium cepa. Genetics and Molecular Research, v. 13, n. 4, p. 9986–9996, 2014. 199. BARCELOS, G. R. M. et al. Evaluation of Antigenotoxic Effects of Plant Flavonoids Quercetin and Rutin on <scp>HepG2</scp> Cells. Phytotherapy Research, v. 25, n. 9, p. 1381–1388, 24 set. 2011. 200. ROBERTO, M. M. et al. Antigenotoxicity and antimutagenicity of ethanolic extracts of Brazilian green propolis and its main botanical source determined by the Allium cepa test system. Genetics and Molecular Biology, v. 39, n. 2, p. 257–269, 24 de maio, 2016. 201. SILVA, D. S. B. S. et al. Investigation of protective effects of Erythrina velutina extract against MMS induced damages in the root meristem cells of Allium cepa. Revista Brasileira de Farmacognosia, v. 23, n. 2, p. 273–278, mar. 2013. 202. DORMOUSOGLOU, M. et al. Investigation of the Genotoxic, Antigenotoxic and Antioxidant Profile of Different Extracts from Equisetum arvense L. Antioxidants, v. 11, n. 7, p. 1393, 18 jul. 2022. 203. STAVROPOULOU, L. S. et al. Phytochemical Profile and Evaluation of the Antioxidant, Cyto-Genotoxic, and Antigenotoxic Potential of Salvia verticillata Hydromethanolic Extract. Plants, v. 13, n. 5, p. 731, 5 mar. 2024.1. MATOS, R. C. DE. et al. Evidence for the efficacy of anti-inflammatory plants used in Brazilian traditional medicine with ethnopharmacological relevance. Journal of Ethnopharmacology, v. 329, p. 118137, jul. 2024. 2. SILVA, W. A. et al. Main chemical constituents and pharmacological ctivities of Dimorphandra spp. Brazilian Journal of Biology, v. 85, 2025. 3. ORGANIZAÇÃO MUNDIAL DA SAÚDE- OMS. Legal Status of Traditional Medicine and Complementary/Alternative Medicine: A Worldwide Review.; 2001. 4. SERAN, S. et al. Augmentation of betacyanin and quercetin in hybrid callus: Comprehensive assessment of biosynthesized silver nanoparticles for their potent biological activities, advanced in silico interactions, and rigorous toxicological evaluation. Industrial Crops and Products, v. 227, p. 120824, maio 2025. 5. MEIRELES, R. DE N. et al. Relationships Between the Use of Medicinal Plants and Animals and Sociodemographic Factors in Brazil: a Systematic Review. Human Ecology, v. 52, n. 6, p. 1217–1237, 8 dez. 2024. 6. BRASIL. Conselho Nacional de Saúde. Resolução n. 338, de 06 de Maio de 2004. Aprova a Política Nacional de Assistência Farmacêutica.; 2004. 7. ANVISA. Memento Fitoterápico da Farmacopéia Brasileira. 1° edição ed. Brasília, Brasil: 2016 8. AZEVEDO, D. Q. DE et al. Implantação de uma farmácia viva no município de Itajubá-MG. Revista de administração Faces Journal, v. 23, n. 04, p. 440–461, out. 2024. 9. CHEROBIN, F. et al. Medicinal plants and public health policies: new perspectives on old practices. Physis, v. 32, n. 3, 2022. 10. SOUSA, N. F. DE et al. In Silico and In Vitro Studies of Terpenes from the Fabaceae Family Using the Phenotypic Screening Model against the SARS-CoV-2 Virus. Pharmaceutics, v. 16, n. 7, p. 912, 9 jul. 2024. 11. MORANTE-CARRIEL, J. et al. Therapeutic Potential of Prenylated Flavonoids of the Fabaceae Family in Medicinal Chemistry: An Updated Review. International Journal of Molecular Sciences, v. 25, n. 23, p. 13036, 4 dez. 2024. 12. CRUZ, R. C. D. DA et al. Bioatividade da raiz de Poincianella bracteosa (Tul.) L.P. Queiroz (Fabaceae) sobre larvas do Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Brazilian Journal of Biosciences, v. 13, n. 1679–2343, p. 259–264, out. 2015. 13. CASTRO, A. S.; CAVALCANTE, A. Flores da caatinga = Caatinga flowers. Campina Grande-PB: Ministério da Ciência, Tecnologia e Inovação–Instituto Nacional do Semiárido., 2011. 14. MONTEIRO, J. M. et al. Does total tannin content explain the use value of spontaneous medicinal plants from the Brazilian semi-arid region? Revista Brasileira de Farmacognosia, v. 24, n. 2, p. 116–123, 2014. 15. CASTRO, K. N. DE C. et al. Ethnobotanical and ethnoveterinary study of medicinal plants used in the municipality of Bom Princípio do Piau, Piau, Brazil. Journal of Medicinal Plants Research, v. 10, n. 23, p. 318–330, 17 jun. 2016. 16. CORADIN, L.; CAMILLO, J.; PAREYN, F. G. C. Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial Plantas para o Futuro - Região Centro-Oeste. Brasília: Ministério do meio Ambiente., 2018. 17. COUTO, A. C. F. et al. Antimutagenic activity and identification of antioxidant compounds in the plant Poincianella bracteosa (Fabaceae). Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN, v. 67, n. 6, p. 0–000, 2019. 18. FREIRE, J. DOS S. et al. Phytochemical and antioxidant characterization, cytogenotoxicity and antigenotoxicity of the fractions of the ethanolic extract of in Poincianella bracteosa (Tul.) L.P. Queiroz. Journal of Toxicology and Environmental Health - Part A: Current Issues, v. 83, n. 23–24, p. 730–747, 16 dez. 2020. 19. PEREIRA, M. L. et al. Evaluation of effects of Poincianella bracteosa (Tul.) L.P. Queiroz leaves in Allium cepa and Mus musculus. Biotechnic and Histochemistry, v. 95, n. 6, p. 464–473, 17 ago. 2020. 20. SILVA, A. G. A. et al. Chemical composition and photoprotective and antiradical activities of the branches of platonia insignis (clusiaceae). Quimica Nova, v. 44, n. 8, p. 954–962, 2021. 21. MARINHO, T. A. et al. Phytochemical characterization, and antioxidant and antibacterial activities of the hydroethanolic extract of anadenanthera peregrina stem bark. Brazilian Journal of Biology, v. 82, 2022. 22. WOŁOSIAK, R. et al. Verification of the conditions for determination of antioxidant activity by abts and dpph assays—a practical approach. Molecules, v. 27, n. 1, 1 jan. 2022. 23. SOUSA, H. G. et al. Phytochemical screening, phenolic and flavonoid contents, antioxidant and cytogenotoxicity activities of Combretum leprosum Mart. (Combretaceae). Journal of Toxicology and Environmental Health - Part A: Current Issues, v. 84, n. 10, p. 399–417, 2021. 24. SALES, P. P. et al. Phytochemical characterization, isolation, antioxidant and cytogenotoxic activity of leaves of Heliotropium elongatum (Lehm) I.M. Johnst. Journal of Toxicology and Environmental Health, Part A, v. 86, n. 23, p. 871–897, 2 dez. 2023. 25. SANTOS, P. N. DOS et al. Análise do potencial citotóxico, genotóxico e mutagênico do extrato hidroalcóolico das folhas da Morus nigra L. Através do bioensaio Allium cepa. Research, Society and Development, v. 9, n. 4, p. e132942968, 22 mar. 2020. 26. DIAS, M. S. et al. Cytogenotoxicity and protective effect of piperine and capsaicin on meristematic cells of Allium cepa l. Anais da Academia Brasileira de Ciências, v. 93, 2021. 27. JUNIOR, E. P. D. V. et al. Protective effect of kavain in meristematic cells of Allium cepa L. Anais da Academia Brasileira de Ciências, v. 94, n. 2, 2022. 28. LOPES, K. S. et al. Identification of bioactive compounds and cytogenotoxicity of the essential oil from the leaves of Croton heliotropiifolius Kunth. Journal of Toxicology and Environmental Health, Part A, v. 85, n. 24, p. 1002–1018, 17 dez. 2022. 29. LEME, D. M.; MARIN-MORALES, M. A. Allium cepa test in environmental monitoring: A review on its application. Mutation Research - Reviews in Mutation Research, jul. 2009. 30. EREN, Y.; ÖZATA, A. Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests. Revista Brasileira de Farmacognosia, v. 24, n. 1, p. 51–59, jan. 2014. 31. FEDEL-MIYASATO, L. E. S. et al. Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: A comparative study. Genetics and Molecular Research, v. 13, n. 2, p. 3411–3425, 2014. 32. YOUSEFBEYK, F. et al. Phytochemical analysis, antioxidant, antibacterial, and cytotoxic activities of leaves and roots of Rubus hyrcanus Juz. European Food Research and Technology, v. 248, n. 1, p. 141–152, 26 jan. 2022. 33. DORMOUSOGLOU, M. et al. Phytochemical Analysis and Genotoxicological Evaluation of Prickly Pear Peel Extracts. Plants, v. 12, n. 7, p. 1537, 3 abr. 2023. 34. DORMOUSOGLOU, M. et al. Beneficial properties of Drimia numidica leaf methanolic extract against the cytogenotoxic effects of mitomycin C on human lymphocytes. Food and Chemical Toxicology, v. 173, p. 113626, mar. 2023. 35. ORGANIZAÇÃO MUNDIAL DA SAÚDE- OMS. Diretrizes Geras Para Metodologias Sobre Pesquisa e Avaliação de Medicina Tradicional.; 2000. 36. VAOU, N. et al. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms, v. 9, n. 10, p. 2041, 27 set. 2021. 37. PEDROSO R. S et al. Plantas medicinais: uma abordagem sobre o uso seguro e racional. Physis: Revista de Saúde Coletiva. 2021;31(2). 38. DUTRA, R. C. et al. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research, v. 112, p. 4–29, out. 2016. 39. BRAGA, F. C. Paving New Roads Towards Biodiversity-Based Drug Development in Brazil: Lessons from the Past and Future Perspectives. Revista Brasileira de Farmacognosia, v. 31, n. 5, p. 505–518, 17 set. 2021. 40. PIRES G. B et al . Análise da atuação do Conselho Nacional de Saúde na Política Nacional de Assistência Farmacêutica. Saúde em Debate, v.49. P.144.2025 41. CERQUEIRA, T. M. G. et al. The Use of Medicinal Plants in Maceió, Northeastern Brazil: An Ethnobotanical Survey. Medicines, v. 7, n. 2, p. 7, 21 jan. 2020. 42. FERREIRA, E. DA C. et al. Local Knowledge and Use of Medicinal Plants in a Rural Community in the Agreste of Paraíba, Northeast Brazil. Evidence-Based Complementary and Alternative Medicine, v. 2021, p. 1–16, 29 dez. 2021. 43. BEZERRA, J. J. L.; PINHEIRO, A. A. V.; BARRETO, E. DE O. Medicinal plants used in the treatment of asthma in different regions of Brazil: A comprehensive review of ethnomedicinal evidence, preclinical pharmacology and clinical trials. Phytomedicine Plus, v. 2, n. 4, p. 100376, nov. 2022. 44. KUHN AGNES, K. N. et al. Ethnobotanical knowledge on native Brazilian medicinal plants traditionally used as anthelmintic agents – A review. Experimental Parasitology, v. 249, p. 108531, jun. 2023. 45. GRYGIER, A. et al. Seven underutilized species of the Fabaceae family with high potential for industrial application as alternative sources of oil and lipophilic bioactive compounds. Industrial Crops and Products, v. 186, p. 115251, out. 2022. 46. ZAPPI, D. C. et al. Growing knowledge: an overview of Seed Plant diversity in Brazil. Rodriguésia, v. 66, n. 4, p. 1085–1113, 2015. 47. ASFAW, M. M.; ABEBE, F. B. Traditional Medicinal Plant Species Belonging to Fabaceae Family in Ethiopia: A Systematic Review. International Journal of Plant Biology, v. 12, n. 1, p. 8473, 5 jan. 2022. 48. MAROYI, A. Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review. Plants, v. 12, n. 6, p. 1255, 10 mar. 2023. 49. CRUZ, M. F. DA et al. The subfamily Cercidoideae (Fabaceae Lindl.) in the Chapada do Araripe, Northeast Brazil. Phytotaxa, v. 640, n. 1, p. 27–38, 7 mar. 2024. 50. USMAN, M. et al. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules, v. 27, n. 12, p. 3863, 16 jun. 2022. 51. SILVA, L. N. et al. Hydrolyzable tannins from Poincianella (Caesalpinia) microphylla fruits: Metabolite profiling and anti-Trichomonas vaginalis activity. Food Research International, v. 134, p. 109236, ago. 2020. 52. SOUSA, L. M. S. DE. et al. Poincianella pyramidalis (Tul) L.P. Queiroz: A review on traditional uses, phytochemistry and biological-pharmacological activities. Journal of Ethnopharmacology, v. 264, p. 113181, jan. 2021. 53. ZANIN, J. L. B. et al. The Genus Caesalpinia L. (Caesalpiniaceae): Phytochemical and Pharmacological Characteristics. Molecules, v. 17, n. 7, p. 7887–7902, 29 jun. 2012. 54. SILVA, K. S. DA et al. Phytotherapeutic properties of the Caesalpinia genus present in the Caatinga biome. Scientific Electronic Archives, v. 14, n. 6, 5 jul. 2021. 55. CHAVES, T. P. et al. Phytochemical characterization and mutagenicity, cytotoxicity, antimicrobial and modulatory activities of Poincianella pyramidalis (Tul.) L.P. Queiroz. Natural Product Research, v. 34, n. 23, p. 3382–3387, 1 dez. 2020. 56. GUIDI, A. C. et al. Stem bark extract of Poincianella pluviosa incorporated in polymer film: Evaluation of wound healing and anti-staphylococcal activities. Injury, v. 51, n. 4, p. 840–849, abr. 2020. 57. FERRAZ, J. S. F. et al. Estrutura do componente arbustivo-arbóreo da vegetação em duas áreas de caatinga, no município de Floresta, Pernambuco. Revista Árvore, v. 38, n. 6, p. 1055–1064, dez. 2014. 58. OLIVEIRA, L. P. DE et al. Chemical characteristics, degradation kinetics and gas production of arboreal species for ruminants. REVISTA CIÊNCIA AGRONÔMICA, v. 51, n. 3, 2020. 59. BAPTISTEL, A. C. et al. Plantas medicinais utilizadas na Comunidade Santo Antônio, Currais, Sul do Piauí: um enfoque etnobotânico. Revista Brasileira de Plantas Medicinais, v. 16, n. 2 suppl 1, p. 406–425, 2014. 60. ANJALI et al. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress, v. 8, p. 100154, jun. 2023. 61. SALAM, U. et al. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life, v. 13, n. 3, p. 706, 6 mar. 2023. 62. BORGES, L. P.; AMORIM, V. A. METABÓLITOS SECUNDÁRIOS DE PLANTAS SECONDARY PLANT METABOLITES. Revista Agrotecnologia, Ipameri, n. 11, p. 54–67, 2020. 63. KETEHOULI, T. et al. Secondary metabolites in plant-microbe interactions. Journal of Applied Microbiology, v. 136, n. 6, 2 jun. 2025. 64. CHEN, N. et al. Potential application of phenolic compounds with different structural complexity in maize starch-based film. Food Structure, v. 36, p. 100318, abr. 2023. 65. KUMAR, K. et al. An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance. Stresses, v. 3, n. 3, p. 570–585, 8 ago. 2023. 66. OGUTCEN, E. et al. Chemical Basis of Floral Color Signals in Gesneriaceae: The Effect of Alternative Anthocyanin Pathways. Frontiers in Plant Science, v. 11, 14 dez. 2020. 67. EL-MERGAWI, R.; EL-DABAA, M.; ELKHAWAGA, F. The metabolic profiles of phenolic acids and aromatic amino acids in the Orobanche crenata parasite and its host faba bean at different infestation stages. Phytoparasitica, v. 52, n. 5, p. 94, 30 nov. 2024. 68. RANNER, J. L. et al. Primary and Secondary Metabolites in Lotus japonicus. Journal of Agricultural and Food Chemistry, v. 71, n. 30, p. 11277–11303, 2 ago. 2023. 69. REZAUL ISLAM, MD. et al. Alkaloids as drug leads in Alzheimer’s treatment: Mechanistic and therapeutic insights. Brain Research, v. 1834, p. 148886, jul. 2024. 70. XUE, X. et al. Metabolomics and transcriptomics analyses for characterizing the alkaloid metabolism of Chinese jujube and sour jujube fruits. Frontiers in Plant Science, v. 14, 18 set. 2023. 71. WEI, J. et al. Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants (Camellia sinensis). International Journal of Molecular Sciences, v. 24, n. 8, p. 6937, 8 abr. 2023. 72. FAN, M. et al. Application of Terpenoid Compounds in Food and Pharmaceutical Products. Fermentation, v. 9, n. 2, p. 119, 26 jan. 2023. 73. ZHAN, X.; QIAN, Y.; MAO, B. Metabolic Profiling of Terpene Diversity and the Response of Prenylsynthase-Terpene Synthase Genes during Biotic and Abiotic Stresses in Dendrobium catenatum. International Journal of Molecular Sciences, v. 23, n. 12, p. 6398, 7 jun. 2022. 74. BUENO, F. G. et al. Hydrolyzable tannins from hydroalcoholic extract from Poincianella pluviosa stem bark and its wound-healing properties: Phytochemical investigations and influence on in vitro cell physiology of human keratinocytes and dermal fibroblasts. Fitoterapia, v. 99, p. 252–260, dez. 2014. 75. BUENO, F. G. et al. Enhanced Cutaneous Wound Healing In Vivo by Standardized Crude Extract of Poincianella pluviosa. PLOS ONE, v. 11, n. 3, p. e0149223, 3 mar. 2016. 76. SOUZA, J. et al. Leaves from the Tree Poincianella pluviosa as a Renewable Source of Antiplasmodial Compounds against Chloroquine-Resistant Plasmodium falciparum. Journal of the Brazilian Chemical Society, 2018. 77. TUMILAAR, S. G. et al. A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. Journal of Chemistry, v. 2024, p. 1–21, 31 maio 2024. 78. LI, X. et al. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Frontiers in Pharmacology, v. 14, 26 jul. 2023. 79. NUNES, I. J. et al. Exploring the structure-activity relationship (SAR) of Schiff bases as effective compounds in scavenging free radicals. Journal of Molecular Structure, v. 1315, p. 138729, nov. 2024. 80. VELLOSA, J. C. R. et al. ESTRESSE OXIDATIVO: UMA INTRODUÇÃO AO ESTADO DA ARTE / OXIDATIVE STRESS: AN INTRODUCTION TO THE STATE OF ART. Brazilian Journal of Development, v. 7, n. 1, p. 10152–10168, 2021. 81. BLAGOV, A. V. et al. Potential use of antioxidants for the treatment of chronic inflammatory diseases. Frontiers in Pharmacology, v. 15, 16 maio 2024. 82. SOUZA, L. M. V. et al. Treinamento intervalado de alta intensidade e estresse oxidativo: uma breve apresentação. Research, Society and Development, v. 9, n. 8, p. e741986478, 31 jul. 2020. 83. MUNTEANU, I. G.; APETREI, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, v. 22, n. 7, p. 3380, 25 mar. 2021. 84. GULCIN, İ.; ALWASEL, S. H. DPPH Radical Scavenging Assay. Processes, v. 11, n. 8, p. 2248, 26 jul. 2023. 85. HASSANPOUR, S. H.; DOROUDI, A. Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna Journal of PhytomedicineMashhad University of Medical Sciences, 1 jan. 2023. 86. CANO, A. et al. ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes, v. 11, n. 1, p. 185, 6 jan. 2023. 87. EL OMARI, N. et al. Fenchone and camphor: Main natural compounds from Lavandula stoechas L., expediting multiple in vitro biological activities. Heliyon, v. 9, n. 11, p. e21222, nov. 2023. 88. ILYASOV, I. R. et al. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. International Journal of Molecular Sciences, v. 21, n. 3, p. 1131, 8 fev. 2020. 89. CAVALCANTE, M. DE A.; BORGES, W. L.; SOUZA, T. M. DE. Compostos fenólicos a partir de vegetais: uma revisão sobre os métodos de quantificação e avaliação das propriedades antioxidante e antimicrobiana. Peer Review, v. 6, n. 10, p. 66–89, 9 maio 2024. 90. MATOS, F. J. DE A. Introdução a fitoquímica experimental. FORTALEZA: UFC, 2009. v. 03 91. BELEW, A. A.; HANA, G. M.; MESHESHA, D. S. Preliminary Phytochemical Screening, Isolation, Characterization, Structural Elucidation and Antibacterial Activities of Leaves Extracts Rhus vulgaris (Kimmo). Oriental Journal of Physical Sciences, v. 9, n. 2, p. 118–130, 10 dez. 2024. 92. MAHESHWARAN, L. et al. Phytochemical Testing Methodologies and Principles for Preliminary Screening/ Qualitative Testing. Asian Plant Research Journal, v. 12, n. 5, p. 11–38, 19 ago. 2024. 93. AVRĂMIA, I.; OROIAN, M.-A.; OIŢĂ, R.-C. A review of current trends of vitamin identification and quantification by chromatography from food samples. Journal of Food Composition and Analysis, v. 131, p. 106244, jul. 2024. 94. CUSTODIO-MENDOZA, J. A. et al. Advances in Chromatographic Analysis of Phenolic Phytochemicals in Foods: Bridging Gaps and Exploring New Horizons. Foods, v. 13, n. 14, p. 2268, 18 jul. 2024. 95. MISS. PAYAL BADHE; DR. VIJAYA BARGE. A Review on High Performance Thin Layer Chromatography. International Journal of Scientific Research in Science and Technology, p. 445–455, 7 fev. 2024. 96. SUSANTI, I. et al. Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. Plants, v. 13, n. 7, p. 965, 27 mar. 2024. 97. BUDETIĆ, M. et al. Review of Characteristics and Analytical Methods for Determination of Thiabendazole. Molecules, v. 28, n. 9, p. 3926, 6 de maio, 2023. 98. DEBNATH, S. et al. Advances in chromatography: contemporary techniques and applications. Essential Chem, v. 2, n. 1, p. 1–27, 31 dez. 2025. 99. PANDISELVAM, R. et al. Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut (Cocos nucifera L.). Molecules, v. 27, n. 10, p. 3250, 19 maio 2022. 100. PAVIA, D. L. et al. Introdução à Espectroscopia: Tradução da 4a edição norte-americana. Cengage Learning ed. São Paulo: 2010, 2010. v. 1 101. GUO, Y. et al. Advances on Water Quality Detection by UV-vis Spectroscopy. Applied Sciences, v. 10, n. 19, p. 6874, 30 set. 2020. 102. MA, X. Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques. Molecules, v. 27, n. 19, p. 6466, 30 set. 2022. 103. DEMICHEVA, E. et al. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites, v. 14, n. 1, p. 54, 14 jan. 2024. 104. DAVID SMITH et al. Breathborne Biomarkers and the Human Volatilome. Elsevier, 2020. 105. MALM, L. et al. Quantification Approaches in Non-Target LC/ESI/HRMS Analysis: An Interlaboratory Comparison. Analytical Chemistry, v. 96, n. 41, p. 16215–16226, 15 out. 2024. 106. ARAÚJO, J. R. DA S. et al. Phytochemical prospecting, isolation, and protective effect of the ethanolic extract of the leaves of Jatropha mollissima (Pohl) Baill. Journal of Toxicology and Environmental Health, Part A, v. 84, n. 18, p. 743–760, 17 set. 2021. 107. LEME, D. M.; MARIN-MORALES, M. A. Allium cepa test in environmental monitoring: A review on its application. Mutation Research/Reviews in Mutation Research, v. 682, n. 1, p. 71–81, jul. 2009. 108. LEME, D. M.; ANGELIS, D. DE F. DE; MARIN-MORALES, M. A. Action mechanisms of petroleum hydrocarbons present in waters impacted by an oil spill on the genetic material of Allium cepa root cells. Aquatic Toxicology, v. 88, n. 4, p. 214–219, 30 jul. 2008. 109. MAZZEO, D. E. C.; FERNANDES, T. C. C.; MARIN-MORALES, M. A. Cellular damages in the Allium cepa test system, caused by BTEX mixture prior and after biodegradation process. Chemosphere, v. 85, n. 1, p. 13–18, 2011. 110. FERNANDES, T. C. C.; MAZZEO, D. E. C.; MARIN-MORALES, M. A. Origin of nuclear and chromosomal alterations derived from the action of an aneugenic agent-Trifluralin herbicide. Ecotoxicology and Environmental Safety, v. 72, n. 6, p. 1680–1686, set. 2009. 111. VENTURA-CAMARGO, B. DE C. et al. The use of the Cytogenetic to Identify Mechanisms of Action of an Azo Dye in Allium Cepa Meristematic Cells. Journal of Environmental & Analytical Toxicology, v. 01, n. 02, 2011. 112. CHAVES, M. H. Análise de extratos de plantas por CCD: Uma metodologia aplicada à disciplina “química orgânica” - Analysis of extracts of plants by tlc: a methodology applied in the “organic chemistry”. QUÍMICA NOVA, v. 20, n. 5, p. 560–562, 1997. 113. SWAIN, T.; HILLIS, W. E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, v. 10, n. 1, p. 63–68, 2 jan. 1959. 114. ROCHA, T. S. DA et al. Vitamin C and Phenolic Antioxidants of Jua (Ziziphus joazeiro M.) Pulp: A Rich Underexplored Brazilian Source of Ellagic Acid Recovered by Aqueous Ultrasound-Assisted Extraction. Molecules, v. 27, n. 3, p. 627, 19 jan. 2022. 115. BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, v. 28, n. 1, p. 25–30, 1995. 116. VIEIRA, L. M. et al. Fenólicos totais e capacidade antioxidante in vitro de polpas de frutos tropicais. Revista Brasileira de Fruticultura, v. 33, n. 3, p. 888–897, 9 set. 2011. 117. DIAS, W. L. F. et al. Cytogenotoxic effect, phytochemical screening and antioxidant potential of Jatropha mollissima (Pohl) Baill leaves. South African Journal of Botany, v. 123, p. 30–35, jul. 2019. 118. RUFINO, M. DO S. M. et al. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH Introdução. Fortaleza: Embrapa, 2007. 119. RE, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and medicine, v. 26, n. 9–10, p. 1231–1237, maio 1999. 120. LIMA, A. DE. Caracterização química, avaliação da atividade antioxidante in vitro e in vivo, e identificação dos compostos fenólicos presentes no Pequi (Caryocar brasiliense, Camb.). São Paulo: Universidade de São Paulo, 23 abr. 2008. 121. ALVES, P. E S. et al. The Free Radical Scavenging Property of the Leaves, Branches, and Roots of Mansoa hirsuta DC: In Vitro Assessment, 3D Pharmacophore, and Molecular Docking Study. Molecules, v. 27, n. 18, p. 6016, 15 set. 2022. 122. OLIVEIRA, M. D. A. et al. Anthelmintic Potential of Conjugated Long-Chain Fatty Acids Isolated from the Bioluminescent Mushroom Neonothopanus gardneri. Journal of Natural Products, v. 88, n. 2, p. 255–261, 28 fev. 2025. 123. ALMEIDA, P. M. et al. Genotoxic potential of leaf extracts of Jatropha gossypiifolia L. Genetics and Molecular Research, v. 15, n. 1, 5 fev. 2016. 124. FERNANDES, T. C. C.; MAZZEO, D. E. C.; MARIN-MORALES, M. A. Origin of nuclear and chromosomal alterations derived from the action of an aneugenic agent—Trifluralin herbicide. Ecotoxicology and Environmental Safety, v. 72, n. 6, p. 1680–1686, set. 2009. 125. WATERS, M. D. et al. Antimutagenicity profiles for some model compounds. Mutation Research/Reviews in Genetic Toxicology, v. 238, n. 1, p. 57–85, jan. 1990. 126. BORGES, C. V. et al. Medicinal plants: Influence of environmental factors on the content of secondary metabolites. Em: Medicinal Plants and Environmental Challenges. Springer International Publishing, 2017. p. 259–277. 127. MORAES, G. V. et al. Potencial antioxidante dos flavonoides e aplicações terapêuticas. Research, Society and Development, v. 11, n. 14, p. e238111436225, 25 out. 2022. 128. JESUS, A. et al. Phenolics as Active Ingredients in Skincare Products: A Myth or Reality? Molecules, 2025. 129. WENG, Z. et al. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. Journal of Advanced Research, v. 57, p. 197–212, 1 mar. 2024. 130. MELO, J. G. DE et al. Antiproliferative Activity, Antioxidant Capacity and Tannin Content in Plants of Semi-Arid Northeastern Brazil. Molecules, v. 15, n. 12, p. 8534–8542, 24 nov. 2010. 131. SÁNCHEZ, C. L.; DE JESÚS, F.; CRUZ, P. Las saponinas y su uso farmacéutico. Revista Del Centro de Graduados e Investigación, v. 37, n. 0185–6294, p. 120–126, 2022. 132. CHAVARRO, C. F. G. et al. Amaryllidaceae: fuente potencial de alcaloides. Actividades biológicas y farmacológicas. Ciencia y Agricultura, v. 17, n. 3, p. 78–94, 28 ago. 2020. 133. BILBAO-RAMOS, P. et al. Evaluating the Potential of Ursolic Acid as Bioproduct for Cutaneous and Visceral Leishmaniasis. Molecules, v. 25, n. 6, p. 1394, 19 mar. 2020. 134. ALVES, C. Q. et al. Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Quim. Nova, v. 33, n. 10, p. 2202–2210, 2010. 135. JAŚKIEWICZ, K.; SZCZĘSNA, T.; JACHUŁA, J. How Phenolic Compounds Profile and Antioxidant Activity Depend on Botanical Origin of Honey—A Case of Polish Varietal Honeys. Molecules, v. 30, n. 2, p. 360, 17 jan. 2025. 136. BERTELLA, A. et al. Phytochemical Study and In Vitro Antioxidant Activity of Helianthemum cinereum Along with Antitumor Activity of the Isolated trans-Tiliroside and Luteolin 4′-O-β-Xyloside. Molecules, v. 29, n. 24, p. 5935, 16 dez. 2024. 137. QI, N. et al. Phenolic Acid and Flavonoid Content Analysis with Antioxidant Activity Assessment in Chinese C. pi. Shen Honey. Molecules, v. 30, n. 2, p. 370, 17 jan. 2025. 138. MORAES, S. Z. DA C. DE et al. Antinociceptive and anti-inflammatory effect of Poincianella pyramidalis (Tul.) L.P. Queiroz. Journal of Ethnopharmacology, v. 254, p. 112563, maio 2020. 139. REYNERTSON, K. A.; BASILE, M. J.; KENNELLY, E. J. Potencial antioxidante de Sete Frutos Mirtáceos. Ethnobotany Research and Applications, v. 3, p. 25–35, 2005. 140. RAFIEE, S. A.; FARHOOSH, R.; SHARIF, A. Antioxidant Activity of Gallic Acid as Affected by an Extra Carboxyl Group than Pyrogallol in Various Oxidative Environments. European Journal of Lipid Science and Technology, p. 1800319, 25 set. 2018. 141. YANG, Y. et al. Photo-assisted Zn-air battery promoted self-powered sensor for selective and sensitive detection of antioxidant gallic acid based on Z-scheme nanoarchitectonics with heterojunction AgBr/CuBi2O4. Sensors and Actuators B: Chemical, v. 393, p. 134302, out. 2023. 142. BAJPAI, V. K. et al. Antioxidant and antimicrobial efficacy of a biflavonoid, amentoflavone from Nandina domestica in vitro and in minced chicken meat and apple juice food models. Food Chemistry, v. 271, p. 239–247, jan. 2019. 143. SIMUNKOVA, M. et al. Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu (II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study. International Journal of Molecular Sciences, v. 22, n. 4, p. 1619, 5 fev. 2021. 144. COLINO, C. I. et al. A comparative study of liposomes and chitosomes for topical quercetin antioxidant therapy. Journal of Drug Delivery Science and Technology, v. 68, p. 103094, fev. 2022. 145. GUSMÃO, D. E. et al. Avaliação do Efeito do Extrato Etanólico de Piper umbellatum L. no Controle Alternativo de Rhizoctonia solani e Macrophomina phaseolina. Ensaios e Ciência C Biológicas Agrárias e da Saúde, v. 24, n. 5- esp., p. 516–522, 18 fev. 2021. 146. SILVA, D. F. DA et al. Caracterização química e estudo biomonitorado de extratos de Polygala boliviensis A.W. Benn (Polygalaceae). Revista RG News, v. 8, n. 2, p. 32–43, 2022. 147. TSIMOGIANNIS, D. et al. Characterization of Flavonoid Subgroups and Hydroxy Substitution by HPLC-MS/MS. Molecules, v. 12, n. 3, p. 593–606, 2007. 148. ANDRADE, C. R. B. DE et al. Correlação entre composição química de folhas de Zanthoxylum caribaeum Lam (Rutaceae) e atividade antioxidante. Revista RG News, v. 8, n. 2, p. 69–80, 2022. 149. BAKOUR, M. et al. Antioxidant content and identification of phenolic/flavonoid compounds in the pollen of fourteen plants using HPLC-DAD. Journal of Apicultural Research, v. 59, n. 1, p. 35–41, 1 jan. 2020. 150. FRANCO, D. M. et al. Seasonal variation in allelopathic potential of the leaves of Copaifera langsdorffii Desf. Acta Botanica Brasilica, v. 30, n. 2, p. 157–165, 15 mar. 2016. 151. PEREIRA, I. DE S. P.; VEGA, M. R. Flavonoids in the Annona genus: Chromatographic and Spectral Methods of Analysis - A Review. Revista Virtual de Química, v. 14, n. 5, p. 778–789, 2022. 152. GAZAFROUDI, K. N. et al. From Stem to Spectrum: Phytochemical Characterization of Five Equisetum Species and Evaluation of Their Antioxidant Potential. Molecules, v. 29, n. 12, p. 2821, 13 jun. 2024. 153. CHATZITZIKA, C. et al. HPLC Analysis of Phenolic Compounds and Flavonoids with Overlapping Peaks. Food technology and biotechnology, v. 58, n. 1, p. 12–19, 2020. 154. SANTI, M. M. et al. Determinação do perfil fitoquímico de extrato com atividade antioxidante da espécie medicinal Cordia verbenacea DC. por HPLC-DAD. Revista Brasileira de Plantas Medicinais, v. 16, n. 2, p. 256–261, jun. 2014. 155. FILHO, A. C. P. DE M. Avaliação fitoquímica e atividades biológicas do extrato do exocarpo do fruto de Protium spruceanum. Journal of Biotechnology and Biodiversity, v. 10, n. 1, p. 034–043, 1 mar. 2022. 156. SYARIFAH, A. L.; RETNOWATI, R. Characterization of Secondary Metabolites Profile of Flavonoid from Salam Leaves (Eugenia polyantha) Using TLC and UV-Spectrophotometry. Pharmaceutical Sciences and Research (PSR), v. 6, n. 3, p. 155–163, 2019. 157. LIMA, N. M. et al. From MS1 to Structure: A Van Krevelen? DBE? Aromaticity-Based Framework for Annotating Specialized Metabolites via High-Resolution Mass Spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, v. 39, 2025. 158. MAGALHÃES, I. L. et al. Chemical Constituents from Caesalpinia férrea: Identification and 1H and 13C Resonance Assignment. American Journal of Analytical Chemistry, v. 05, n. 10, p. 688–694, 2014. 159. CAO, Q. et al. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicology and Applied Pharmacology, v. 319, p. 80–90, mar. 2017. 160. ALKADI, K. A. A. et al. In Vitro Cytotoxicity and Anti-inflammatory Cytokinine Activity Study of Three Isolated Novel Compounds of Prismatomeris glabra. Journal of Pharmacy and Bioallied Sciences, v. 13, n. 1, p. 116–122, jan. 2021. 161. ZHANG, S. et al. Quercetin from Polygonum capitatum Protects against Gastric Inflammation and Apoptosis Associated with Helicobacter pylori Infection by Affecting the Levels of p38MAPK, BCL-2 and BAX. Molecules, v. 22, n. 5, p. 744, 6 maio 2017. 162. KIM, S.-H. et al. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. European Journal of Pharmacology, v. 860, p. 172568, out. 2019. 163. SUN, X. et al. Isovitexin alleviates acute gouty arthritis in rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway. Pharmaceutical Biology, v. 59, n. 1, p. 1324–1331, 28 jan. 2021. 164. ZHANG, Y. et al. Isovitexin Inhibits Ginkgolic Acids-Induced Inflammation Through Downregulating SHP2 Activation. Frontiers in Pharmacology, v. 12, 11 ago. 2021. 165. NASANBAT, B. et al. Kaempferol therapy improved MC903 induced-atopic dermatitis in a mouse by suppressing TSLP, oxidative stress, and type 2 inflammation. Journal of Dermatological Science, v. 111, n. 3, p. 93–100, set. 2023. 166. WANG, R. et al. Kaempferol promotes non-small cell lung cancer cell autophagy via restricting Met pathway. Phytomedicine, v. 121, p. 155090, dez. 2023. 167. MAMAT, N. et al. Gallic Acid and Methyl Gallate Enhance Antiproliferative Effect of Cisplatin on Cervical Cancer (HeLa) Cells. Sains Malaysiana, v. 49, n. 5, p. 1107–1114, 31 maio 2020. 168. LIN, I.-C. et al. Absorption and Metabolism of Urolithin A and Ellagic Acid in Mice and Their Cytotoxicity in Human Colorectal Cancer Cells. Evidence-Based Complementary and Alternative Medicine, v. 2023, n. 1, 5 jan. 2023. 169. PIMPLEY, V. et al. The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Preparative Biochemistry & Biotechnology, v. 50, n. 10, p. 969–978, 2 nov. 2020. 170. LINDEN, M. et al. Effects of flavonoids on membrane adaptation of food-associated bacteria. Biochimica et Biophysica Acta (BBA) - Biomembranes, v. 1865, n. 4, p. 184137, abr. 2023. 171. PAL, S. et al. Adiponectin receptors by increasing mitochondrial biogenesis and respiration promote osteoblast differentiation: Discovery of isovitexin as a new class of small molecule adiponectin receptor modulator with potential osteoanabolic function. European Journal of Pharmacology, v. 913, p. 174634, dez. 2021. 172. VALENTOVÁ, K. et al. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, v. 68, p. 267–282, jun. 2014. 173. LANG, T.-Q. et al. Characterization of chemical components with diuretic potential from Pyrrosia petiolosa. Journal of Asian Natural Products Research, v. 23, n. 8, p. 764–771, 3 ago. 2021. 174. KANDEMIR, K. et al. Recent advances on the improvement of quercetin bioavailability. Trends in Food Science & Technology, v. 119, p. 192–200, jan. 2022. 175. ORABI, M. A. A. et al. Two new C-glycosidic ellagitannins and accompanying tannins from Lawsonia inermis leaves and their cytotoxic effects. Fitoterapia, v. 153, p. 104925, set. 2021. 176. ORABI, M. A. A. et al. Nutritional, Antioxidant, Antimicrobial, and Anticholinesterase Properties of Phyllanthus emblica: A Study Supported by Spectroscopic and Computational Investigations. Metabolites, v. 13, n. 9, p. 1013, 14 set. 2023. 177. CHANG, Z. et al. A Comprehensive Review of the Structure Elucidation of Tannins from Terminalia Linn. Evidence-Based Complementary and Alternative Medicine, v. 2019, p. 1–26, 15 nov. 2019. 178. SANTOS, G. F. DOS. et al. Mass spectrometry-based untargeted metabolomics approaches for comprehensive structural annotation of bioactive metabolites from bushy cashew (Anacardium humile) fruits. South African Journal of Botany, v. 163, p. 121–134, dez. 2023. 179. JUNIOR, A. G. et al. Nitric oxide and K ir 6.1 potassium channel mediate isoquercitrin-induced endothelium-dependent and independent vasodilation in the mesenteric arterial bed of rats. European Journal of Pharmacology, v. 788, p. 328–334, out. 2016. 180. PIAZZA, S. et al. Ellagitannins from Castanea sativa Mill. Leaf Extracts Impair H. pylori Viability and Infection-Induced Inflammation in Human Gastric Epithelial Cells. Nutrients, v. 15, n. 6, p. 1504, 21 mar. 2023. 181. LIU, F.-C. et al. Corilagin reduces acetaminophen-induced hepatotoxicity through MAPK and NF-κB signaling pathway in a mouse model. American Journal of Translational Research, v. 12, n. 9, p. 5597–5607, 2020. 182. DE, R. et al. Antimicrobial activity of ellagic acid against Helicobacter pylori isolates from India and during infections in mice. Journal of Antimicrobial Chemotherapy, v. 73, n. 6, p. 1595–1603, 1 jun. 2018. 183. VELOZ-GARCÍA, R. et al. Antimicrobial activities of cascalote (Caesalpinia cacalaco) phenolics-containing extract against fungus Colletotrichum lindemuthianum. Industrial Crops and Products, v. 31, n. 1, p. 134–138, jan. 2010. 184. PEREIRA, M. T. M. et al. The in vivo anti-inflammatory potential of Myrciaria glazioviana fruits and its chemical profile using mass spectrometry. Food Bioscience, v. 38, p. 100777, dez. 2020. 185. ODUN-AYO, F.; CHETTY, K.; REDDY, L. Determination of the ursolic and oleanolic acids content with the antioxidant capacity in apple peel extract of various cultivars. Brazilian Journal of Biology, v. 82, 2022. 186. NASCIMENTO, P. DO et al. Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives. Molecules, v. 19, n. 1, p. 1317–1327, 21 jan. 2022. 187. ZHANG, Q. et al. Pharmacognostic Study on Elsholtzia ciliata (Thumb.) Hyl: Anatomy, Phytochemistry and Pharmacological Activities. Pharmaceuticals, v. 14, n. 11, p. 1152, 12 nov. 2021. 188. FREIRE, J. DOS S. Perfil fitoquímico, atividade antioxidante e citogenotoxicidade da catingueira (Poincianella bracteosa (Tul.) L.P. Queiroz). Teresina-Programa de Pós-Graduação em Química- Universidade Estadual do Piauí., 2020. 189. JUNIOR, E. P. D. VALE et al. Protective effect of kavain in meristematic cells of Allium cepa L. Anais da Academia Brasileira de Ciências, v. 94, n. 2, 2022. 190. BIANCHI, J.; CASIMIRO FERNANDES, T. C.; MARIN-MORALES, M. A. Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere, v. 144, p. 475–483, fev. 2016. 191. KUCK, K. et al. Terpenoids from Myrrh and Their Cytotoxic Activity against HeLa Cells. Molecules, v. 28, n. 4, p. 1637, 8 fev. 2023. 192. MARTÍN-CORDERO, C. et al. Cytotoxic Triterpenoids from Erica andevalensis. Zeitschrift für Naturforschung C, v. 56, n. 1–2, p. 45–48, 1 fev. 2001. 193. DEVAPPA, R. K.; MAKKAR, H. P. S.; BECKER, K. Jatropha Diterpenes: a Review. Journal of the American Oil Chemists’ Society, v. 88, n. 3, p. 301–322, 28 mar. 2011. 194. KORNEL, A.; NADILE, M.; TSIANI, E. Evidence of the Beneficial Effects of Ursolic Acid against Lung Cancer. Molecules, v. 27, n. 21, p. 7466, 2 nov. 2022. 195. PANDA, S. S.; THANGARAJU, M.; LOKESHWAR, B. L. Ursolic Acid Analogs as Potential Therapeutics for Cancer. Molecules, v. 27, n. 24, p. 8981, 16 dez. 2022. 196. ÇAVUŞOĞLU, D. et al. Mitigative effect of green tea extract against mercury (II) chloride toxicity in Allium cepa L. model. Environmental Science and Pollution Research, v. 29, n. 19, p. 27862–27874, 4 abr. 2022. 197. CHATTERJEE, N.; WALKER, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Environmental and Molecular Mutagenesis, v. 58, n. 5, p. 235–263, 9 jun. 2017. 198. FELICIDADE, I. et al. Mutagenic and antimutagenic effects of aqueous extract of rosemary (Rosmarinus officinalis L.) on meristematic cells of Allium cepa. Genetics and Molecular Research, v. 13, n. 4, p. 9986–9996, 2014. 199. BARCELOS, G. R. M. et al. Evaluation of Antigenotoxic Effects of Plant Flavonoids Quercetin and Rutin on <scp>HepG2</scp> Cells. Phytotherapy Research, v. 25, n. 9, p. 1381–1388, 24 set. 2011. 200. ROBERTO, M. M. et al. Antigenotoxicity and antimutagenicity of ethanolic extracts of Brazilian green propolis and its main botanical source determined by the Allium cepa test system. Genetics and Molecular Biology, v. 39, n. 2, p. 257–269, 24 de maio, 2016. 201. SILVA, D. S. B. S. et al. Investigation of protective effects of Erythrina velutina extract against MMS induced damages in the root meristem cells of Allium cepa. Revista Brasileira de Farmacognosia, v. 23, n. 2, p. 273–278, mar. 2013. 202. DORMOUSOGLOU, M. et al. Investigation of the Genotoxic, Antigenotoxic and Antioxidant Profile of Different Extracts from Equisetum arvense L. Antioxidants, v. 11, n. 7, p. 1393, 18 jul. 2022. 203. STAVROPOULOU, L. S. et al. Phytochemical Profile and Evaluation of the Antioxidant, Cyto-Genotoxic, and Antigenotoxic Potential of Salvia verticillata Hydromethanolic Extract. Plants, v. 13, n. 5, p. 731, 5 mar. 2024.por
dc.rightsAcesso Abertopor
dc.subjectAlterações Cromossômicaspor
dc.subjectAtividade Antioxidanteeng
dc.subjectCatingueirapor
dc.subjectPolifenóispor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::QUIMICApor
dc.titleProspecção fitoquímica e efeito genoprotetor das cascas da Poincianella bracteosa (TUL.) L.P. Queiroz em células meristemáticas de Allium cepa (L.)por
dc.title.alternativePhytochemical prospecting and genoprotective effect of Poicianella bracteosa (TUL.) L.P. Queiroz bark on meristematic cells of Allium cepa (L)por
dc.typeDissertaçãopor
Aparece nas coleções:Programa de Pós-Graduação em Química

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertação Completa.pdf2,11 MBAdobe PDFBaixar/Abrir Pré-Visualizar


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.